Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:
	integer.	
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		TI HOE CC 10: 21
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)	A	and 9 exactly.
5. Prime Number	A number with exactly two factors .	The first ten prime numbers are:
Number	A number that can only be divided by itself	2 2 5 7 11 12 17 10 22 20
	and one.	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	and one.	
	The number 1 is not prime, as it only has	
	one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor	Francisco Maria de la Francisco Companyo	p
		2,3
7. Product of	Finding out which prime numbers	36
Prime Factors	multiply together to make the original	$36 = 2 \times 2 \times 3 \times 3$
	number.	(2) 18 or $2^2 \times 3^2$
	Use a prime factor tree.	2 9
		(3) (3)
	Also known as 'prime factorisation'.	

Topic/Skill	Definition/Tips	Example		
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is		
	number.	in the 'tens' column.		
2. Place Value	The names of the columns that determine	PLACE VALUE CHART		
Columns	the value of each digit.	Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Ones Tenths Hundredths Thousandths Thousandths Thousandths Thousandths Millionths		
	The 'ones' column is also known as the 'units' column.	Millions Hundred Thous Ten Thousands Thousands Hundreds Tens Ones Decimal Point Tenths Hundredths Tenths Hundredths Tenths Hundredths Tenths Millionths		
3. Rounding	To make a number simpler but keep its value close to what it was.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80.		
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.		
4. Decimal Place	The position of a digit to the right of a decimal point.	In the number 0.372, the 7 is in the second decimal place.		
		0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down.		
		Careful with money - don't write £27.4, instead write £27.40		
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number.	In the number 0.00821, the first significant figure is the 8.		
	The first significant figure of a number cannot be zero.	In the number 2.740, the 0 is not a significant figure.		
	Cannot be zero.	0.00821 rounded to 2 significant figures		
	In a number with a decimal, trailing zeros are not significant.	is 0.0082.		
		19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.		
6. Truncation	A method of approximating a decimal	3.14159265 can be truncated to		
	number by dropping all decimal places	3.1415 (note that if it had been		
7.5	past a certain point without rounding.	rounded, it would become 3.1416)		
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal		
Interval	have taken before being rounded or truncated.	place. The error interval is:		
	An error interval is written using	The strot more variable		
	inequalities, with a lower bound and an upper bound .	$0.55 \le x < 0.65$		
		The lower bound is 0.55		
		The upper bound is 0.65		

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. ≈ means 'approximately equal to'	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers. π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer, whose value cannot be determined exactly. Surds have infinite non-recurring	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2} = 1.41421356 \dots \text{ which never repeats.}$
12. Rules of Surds	decimals. $\sqrt{ab} = \sqrt{a} \times \sqrt{b}$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$
	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$	$\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$
	$\sqrt{a} \times \sqrt{a} = a$	2.0
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers.	$\frac{\sqrt{7} \times \sqrt{7} = 7}{\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}}$
		$\frac{6}{3+\sqrt{7}} = \frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}$ $= \frac{18-6\sqrt{7}}{9-7}$ $= \frac{18-6\sqrt{7}}{2} = 9-3\sqrt{7}$

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	·
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions , one positive and one negative .	
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	$2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
(D	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	21 2
		$3^1 = 3$
		$3^2 = 9$
		$3^3 = 27$
		$3^4 = 81 \text{ etc.}$ $7^5 \times 7^3 = 7^8$
7.	When multiplying with the same base	
Multiplication	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
Index Law	m n $m+n$	$4x^5 \times 2x^8 = 8x^{13}$
0 D	$a^m \times a^n = a^{m+n}$	$15^7 \div 15^4 = 15^3$
8. Division	When dividing with the same base (number	$15^{7} \div 15^{7} = 15^{3}$ $x^{9} \div x^{2} = x^{7}$
Index Law	or letter), subtract the powers.	70 70 70
	$a^m \cdot a^n - a^{m-n}$	$20a^{11} \div 5a^3 = 4a^8$
0 Dec -1	$a^m \div a^n = a^{m-n}$ When reiging a review to enother review	(. 2\5 . 10
9. Brackets	When raising a power to another power,	$(y^{2})^{5} = y^{10}$ $(6^{3})^{4} = 6^{12}$ $(5x^{6})^{3} = 125x^{18}$
Index Laws	multiply the powers together.	$(0^{\circ})^{\circ} = 0^{\circ \circ}$
	$(a^m)^n = a^{mn}$	$(5x^\circ)^\circ = 125x^{10}$
10. Notable		$99999^0 = 1$
Powers	$\left egin{array}{l} oldsymbol{p} = oldsymbol{p}^- \ oldsymbol{p}^0 = oldsymbol{1} \end{array} \right $	77777 — 1
11. Negative	$p^{\circ} = 1$ A negative power performs the reciprocal.	1 1
Powers	4	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
1 0 W C1 S	$a^{-m} = \frac{1}{a^m}$	3* 9
12. Fractional	$a^{-m} = \frac{1}{a^m}$ The denominator of a fractional power acts	2 (3/2
Powers	as a 'root'.	$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$
10016		
	The numerator of a fractional power acts as	$(25)^{\frac{3}{2}} (\sqrt{25})^3 (5)^3 125$
	a normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	1	(10) (116) (4) 04
	$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$	
	$u^n = (\gamma u)$	

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^b$	$8400 = 8.4 \times 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \times 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic/Skill	Definition/Tips	Example	
1. Types of Data	Qualitative Data – non-numerical data Quantitative Data – numerical data	Qualitative Data – eye colour, gender etc.	
	Continuous Data – data that can take any numerical value within a given range.	Continuous Data – weight, voltage etc.	
	Discrete Data – data that can take only specific values within a given range.	Discrete Data – number of children, shoe size etc.	
2. Grouped	Data that has been bundled in to	Foot length, I, (cm) Number of children	
Data	categories.	10 ≤ <i>l</i> < 12 5	
	Saan in grouped fraguency tables	12 ≤ <i>l</i> < 17 53	
	Seen in grouped frequency tables, histograms, cumulative frequency etc.		
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a	
/Secondary Data	specific purpose.	student for their own research project.	
	Secondary Data – collected by someone	Secondary Data – Census data used to	
	else for another purpose.	analyse link between education and earnings.	
4. Mean	Add up the values and divide by how many	The mean of 3, 4, 7, 6, 0, 4, 6 is	
	values there are.	$\frac{3+4+7+6+0+4+6}{}=5$	
7. N. C.	1 F: 14 .:1 .: ('C	7	
5. Mean from a Table	 Find the midpoints (if necessary) Multiply Frequency by values or 	Height in cm Frequency Midpoint F \times M 0 < h \leq 10 8 5 8 \times 5=40	
Table	midpoints	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	3. Add up these values	Total 24 Ignore! 450	
	4. Divide this total by the Total Frequency	Estimated Mean	
		height: 450 ÷ 24 = 18.75cm	
	If grouped data is used, the answer will be an estimate .	10.75cm	
6. Median	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6	
Value	D (4 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Put the data in order and find the middle one.	Ordered: 2, 3, 4, 5 , 6, 6, 7	
	If there are two middle values , find the	Median = 5	
	number half way between them by adding		
	them together and dividing by 2.		
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the position of	If the total frequency is 15, the median	
from a Table	the median.	will be the $\left(\frac{15+1}{2}\right) = 8th$ position	
	n is the total frequency.		
8. Mode /Modal Value	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4	
	Can have more than one mode (called bi-	Mode = 4	
	modal or multi-modal) or no mode (if all		
9. Range	values appear once) Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.	
		Panca = 102 2 = 00	
		Range = $102-3 = 99$	

	Range is a 'measure of spread'. The smaller	
	the range the more <u>consistent</u> the data.	
10. Outlier	A value that 'lies outside' most of the other	Outlier
	values in a set of data.	10
	An outlier is much smaller or much	6
	larger than the other values in a set of data.	4
	and ger than the chief where in a certain and	2
		0 20 40 60 80 100
11 T	D' 1 4 1 4 1 16 C4 1 4 1 4	
11. Lower	Divides the bottom half of the data into	Find the lower quartile of: $2, \underline{3}, 4, 5, 6$,
Quartile	two halves.	6, 7
	$LQ = Q_1 = \frac{(n+1)}{4}th \text{ value}$	$Q_1 = \frac{(7+1)}{4} = 2nd \text{ value } \to 3$
12. Lower	Divides the top half of the data into two	Find the upper quartile of: 2, 3, 4, 5, 6,
Quartile	halves.	6 , 7
	$UQ = Q_3 = \frac{3(n+1)}{4}th \text{ value}$	$Q_3 = \frac{3(7+1)}{4} = 6th \text{ value } \to 6$
13.	The difference between the upper quartile	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	and lower quartile.	
Range	1	$IQR = Q_3 - Q_1 = 6 - 3 = 3$
180	$IQR = Q_3 - Q_1$	14.1 - 43 $41 - 9$ $3 - 9$
	$\mathbf{r}\mathbf{v}\mathbf{n} - \mathbf{v}_3 \mathbf{v}_1$	
	Th	
	The smaller the interquartile range, the	
	more consistent the data.	

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs.	1	JHT 11	7
		2	1111	5
		3	JHT 1	6
		4	1111	5
		5	Ш	3
2 D C1	D 1	Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.	Liednenck 14 12 10 8 6 6 0 0 NL	1 2 3	4 owned
3. Types of	Compound/Composite Bar Charts show		fron	
Bar Chart	data stacked on top of each other. Comparative/Dual Bar Charts show data	Weight (gm) 40 10 10 10 10 10 10 10 10 10 10 10 10 10	Carbon Auminum B Sample	c
	side by side.	40 30 20 10 Jan Feb	Mar Apr May Month Bar Chart	Key: London Bristol
4. Pie Chart	Used for showing how data breaks down	Sa	uash	
	into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category.	Tennis 40 60 Hockey	Football 144° 80° Netball	
	Remember to label the category that each sector in the pie chart represents.	If there are 40 pe each person will of the pie chart.		

5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key .	Black A A A A A A A A A A A A A A A A A A A
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9
7. Two Way Tables	A table that organises data around two categories. Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows.	Question: Complete the 2 way table below.
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot. A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper quartile is 17. Draw a box plot to represent this information.
9. Comparing Box Plots	Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. You must compare box plots in the context of the problem.	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Topic/Skill	Definition/Tips	Example
1. Correlation	Correlation between two sets of data means	There is correlation between
	they are connected in some way.	temperature and the number of ice
		creams sold.
2. Causality	When one variable influences another	The more hours you work at a
	variable.	particular job (paid hourly), the higher
	, ariaciei	your income from that job will be.
3. Positive	As one value increases the other value	Line of Text Pa
Correlation	increases.	
4. Negative Correlation	As one value increases the other value decreases.	Positive Correlation
		Negative Correlation
5. No	There is no linear relationship between	5 X
Correlation	the two.	x x x x
		* * * * * *
		. *
		No Correlation
6. Strong Correlation	When two sets of data are closely linked .	
		Strong Positive Correlation
7. Weak	When two sets of data have correlation, but	
Correlation	are not closely linked.	
		Weak
		Positive Correlation
8. Scatter	A graph in which values of two variables	Statispidi for quality characteristic XXX
_	& 1	
Graph	are plotted along two axes to compare	in the second se
	them and see if there is any connection	
	between them.	
O Line - CD - 4	A straight line that hard warrants ()	rosansa
9. Line of Best	A straight line that best represents the	x x
Fit	data on a scatter graph.	x x x
		x x x
		X X
10. Outlier	A value that 'lies outside' most of the other	12 Outlier
20.00000	values in a set of data.	10 Outlier
	An outlier is much smaller or much	8 6
	larger than the other values in a set of data.	4
	ranger man the other values in a set of data.	2
		0
		0 20 40 60 80 100

Topic: Histograms and Cumulative Frequency

Topic/Skill	Definition/Tips	Example	
1. Histograms	A visual way to display frequency data using bars. Bars can be unequal in width . Histograms show frequency density on the y-axis , not frequency. Frequency Density = $\frac{Frequency}{Class\ Width}$ Height(cm) Frequency $0 < h \le 10$ 8 $10 < h \le 30$ 6 $30 < h \le 45$ 15	Frequency Density (FD) $8 \div 5 = 1.6$ $6 \div 20 = 0.3$ $15 \div 15 = 1$ $5 \div 25 = 0.2$	
2. Interpreting Histograms	The area of the bar is proportional to the frequency of that class interval. Frequency = Freq Density × Class Width	A histogram shows information about the heights of a number of plants. 4 plants were less than 5cm tall. Find the number of plants more than 5cm tall.	
3. Cumulative Frequency	Cumulative Frequency is a running total . Age Frequency $0 < a \le 10$ 15 $10 < a \le 40$ 35 $40 < a \le 50$ 10	Above 5cm: 1.2 x 10 + 2.4 x 15 = 12 + 36 = 48 Cumulative Frequency 15 15 + 35 = 50 50 + 10 = 60	
4. Cumulative Frequency Diagram	A cumulative frequency diagram is a curve that goes up . It looks a little like a stretched-out S shape . Plot the cumulative frequencies at the end-point of each interval.	40- 30- CF 20- 10- 0 10 20 30 40 50 Height	

5. Quartiles from Cumulative Frequency Diagram	Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data.	40- 30 - Value of UQ taken from 33rd = 37 Value of Medidan taken from 22rd = 30 Value of LQ taken from 11th = 18 0 - 10 - 10 20 30 40 50
		Height $IQR = 37 - 18 = 19$
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.