
Topic: Fractions

	Then just add or subtract the numerators and keep the denominator the same .	$\frac{\frac{2}{3} = \frac{10}{15}}{\frac{4}{5} = \frac{12}{15}}$ $\frac{\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing Fractions	 'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second fraction. 	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$

Topic/Skill	Definition/Tips	Fyampla
-		Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding	To find 10% , divide by 10	$10\% \text{ of } \pounds 36 = 36 \div 10 = \pounds 3.60$
10%	10 mild 10,0, alviae by 10	
1070		
3. Finding 1%	To find 1%, divide by 100	$1\% \text{ of } \pounds 8 = 8 \div 100 = \pounds 0.08$
- 0		
4. Percentage	Difference 100%	A games console is bought for £200
Change	$\frac{Difference}{Original} \times 100\%$	and sold for $\pounds 250$.
	0	
		% change = $\frac{50}{200} \times 100 = 25\%$
		200
5. Fractions to	Divide the numerator by the	3
Decimals	denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
2		0
6. Decimals to	Write as a fraction over 10, 100 or 1000	$0.36 = \frac{36}{100} = \frac{9}{25}$
Fractions	and simplify.	$0.36 = \frac{100}{100} = \frac{100}{25}$
7. Percentages	Divide by 100	$8\% = 8 \div 100 = 0.08$
to Decimals		
0. D. 1. 1.		
8. Decimals to	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
Percentages		
9. Fractions to	Percentage is just a fraction out of 100.	3 12
Percentages	Make the denominator 100 using	$\frac{3}{25} = \frac{12}{100} = 12\%$
	equivalent fractions.	23 100
	When the denominator doesn't go in to	9
	100, use a calculator and multiply the	$\frac{9}{17} \times 100 = 52.9\%$
	fraction by 100.	±,
10.	Percentage is just a fraction out of 100.	1407
Percentages to	Write the percentage over 100 and	$14\% = \frac{14}{100} = \frac{7}{50}$
Fractions	simplify.	

Topic: Calculating with Percentages

1² 1

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \ge 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like ' before ' or	
	ʻoriginal'	$90\% = \pounds 48.60$
		$1\% = \pounds 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		100/c f (1000 - (100))
		$10\% \text{ of } \pounds 1000 = \pounds 100$
		$I_{\text{reterned}} = 2 \times 6100 = 6200$
		Interest = $3 \times \pounds 100 = \pounds 300$

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
2. Inverse	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Opposite	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction.
		The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	Be careful of $5x^2$. You need to square first, then multiply by 5.	2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not	7 ≠ 3
	equal.	
		$x \neq 0$
	$a \neq b$ means that a is not equal to b.	
2. Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or equal to	
	1	-1, 0, 1, 2, 3, 4
	$x \le 6$ means x is less than or equal to 6	
3. Inequalities	Inequalities can be shown on a number line.	
on a Number		-2 -1 0 1 2 3 $x \ge 0$
Line	Open circles are used for numbers that are	$\begin{array}{c} -2 & -1 & 0 & 1 & 2 & 3 \\ \hline \end{array} \\ \begin{array}{c} x \geq 0 \\ x \geq 0 \end{array}$
	less than or greater than $(< or >)$	←
		-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	Closed circles are used for numbers that	
	are less than or equal or greater than or	◆T T T T T T T T T T
	equal $(\leq or \geq)$	$-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ -5 \le x < 4$

Topic: Sequences

		i
	25 × 6	
L	JEC	
	\sim	

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	
		Sequence is: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n - 1$
	term that is in the nth position of the	
	sequence.	The 100^{th} term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a	
6 1 1 1	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	1. Difference is +4
linear	3. Substitute $n = 1$ to find out what	
sequence	number you need to add or subtract to	2. Start with $4n$
	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1 to get 3.
		nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
type sequences	by adding up the previous two terms	1,1,2,3,3,0,13,21,37
		An example of a Fibonacci-type
		sequence is:
		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
1	a number called the common ratio , r .	The common ratio is 5
	,	
		Another example of a geometric
		sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{2}$
8. Triangular	The sequence which comes from a pattern	3
numbers	of dots that form a triangle.	1 3 6 10
numbers	or dots that form a trangle.	
	1, 3, 6, 10, 15, 21	
	1, 5, 0, 10, 13, 21	