Topio/Skill	Definition/Ting	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	Q R 3 4 3 4 4 P 3 4
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point . Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

Topic: Shape Transformations

े 👬 जहा

Tibshelf Community School

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2	Demandicular lines are at right angles	
2. Pernendicular	There is a 90° angle between them	
reipendiculai	There is a 50° angle between them.	
3. Vertex	A corner or a point where two lines meet.	vertex
		б С В
4. Angle	Angle Bisector: Cuts the angle in half.	
Bisector		
	1. Place the sharp end of a pair of	XX
	compasses on the vertex.	
	2. Draw an arc, marking a point on each	
	11ne.	
	compass on each point and mark a centre	Angle Bisector
	point where two arcs cross over	
	4 Use a ruler to draw a line through the	
	vertex and centre point.	
5.	Perpendicular Bisector: Cuts a line in	
Perpendicular	half and at right angles.	X
Bisector		
	1. Put the sharp point of a pair of	Line Bisector
	compasses on A.	
	2. Open the compass over half way on the	A B
	line.	1
	4. Without changing the compass, repeat	
	from point B	
	5. Draw a straight line through the two	$\sim - \sim$
	intersecting arcs.	
6.	The perpendicular distance from a point	
Perpendicular	to a line is the shortest distance to that	P
from an	line.	
External Point		\wedge
	1. Put the sharp point of a pair of	
	compasses on the point.	
	2. Draw an arc that crosses the line twice.	Ж
	3. Place the sharp point of the compass on	
	one of these points, open over half way and	
	draw an arc above and below the line.	
	4. Repeat from the other point on the line.	

	5. Draw a straight line through the two	
7	Given line PO and point R on the line	~~~
7. Perpendicular	Siven line i Q une point it on the line.	
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	
	equal width (giving points S and T)	P S R T Q
	3. Place the compass on point S, open over	
	halfway and draw an arc above the line.	
	4. Repeat from the other arc on the line	
	(point T).	
	5. Draw a straight line from the intersecting	
	arcs to the original point on the line.	
8. Loci and	A locus is a path of points that follow a	
Regions	rule.	
		AB
	For the locus of points closer to B than A,	X
	create a perpendicular Disector between A	
	and B and shade the side closer to B.	Points Closer to B than A.
	For the locus of points equidistant from A	
	use a compass to draw a circle , centre A.	\frown
		2em 2em
		Points less than Points more than 2cm from A 2cm from A
		x
	For the locus of points equidistant to line	
	A and line Y, create an angle disector.	
		Y
	For the locus of points a set distance from	
	a line, create two semi-circles at either end	
	joined by two parallel lines .	
		DĚ/
9. Equidistant	A point is equidistant from a set of objects	
_	if the distances between that point and	
	each of the objects is the same.	
		$\langle \rangle \rangle$

Topic: Basic Probability

ν³⁷ ₩ γα

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something	
	happening.	
		Impossible Unlikely Even Chance Likely Certain
	Is expressed as a number between 0	
	(impossible) and 1 (certain).	
		1-in-6 Chance 4-in-5 Chance
	Can be expressed as a fraction, decimal,	
	percentage or in words (likely, unlikely,	
2 Duch ability	P(A) refers to the nucleability that event A	P(D ad Owner) refers to the nucleability
2. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Inotation	will occur.	or picking a ked Queen from a pack of
3 Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
Probability	Total Number of Possible Outcomes	sided dia $-\frac{1}{2}$
	Norme have a f Grand and Tradiela	Sided the $-\frac{1}{6}$
4. Relative	Number of Successful Irlais	A coin is flipped 50 times and lands on
Frequency	Total Number of Trials	Tails 29 times.
		The relative frequency of getting Tails
		29
		$=\frac{1}{50}$
5. Expected	To find the number of expected outcomes,	The probability that a football team
Outcomes	multiply the probability by the number of	wins is 0.2 How many games would
	trials.	you expect them to win out of 40?
(E-1		$0.2 \times 40 = 8 \text{ games}$
6. Exhaustive	Outcomes are exhaustive if they cover the	when rolling a six-sided die, the
	entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are
	The probabilities of an axbaustive set of	possible outcomes
	outcomes adds up to 1	possible outcomes.
7. Mutually	Events are mutually exclusive if they	Examples of mutually exclusive events:
Exclusive	cannot happen at the same time.	
	The second se	- Turning left and right
	The probabilities of an exhaustive set of	- Heads and Tails on a coin
	mutually exclusive events adds up to 1.	
		Examples of non mutually exclusive
		events:
		- King and Hearts from a deck of cards,
		because you can pick the King of
9 Energy	A dia anome al arreira a la arreira forma ativa i	Hearts
δ. Frequency	A diagram snowing now information is	Wears glasses
Tree	categorised into various categories.	18 Does not
	The numbers at the ends of branchas talls	Boil Wear glasses
	us how often something happened	\square
	(frequency)	Siry Wears glasses
	(equency).	
		Does not wear glasses
L		

Tibshelf Community School

	The lines connected the numbers are called branches .									
9. Sample	The set of all possible outcomes of an	;	+	1	2	3	4	5	6	
Space	experiment.		1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
			6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from	A samp	ole c	coul	d be	e se	lect	ing	10 s	students
	a population.	from a	yea	r gr	oup	at s	scho	ool.		
	A sample is biased if individuals or groups									
	from the population are not represented in									
	the sample.									
11. Sample	The larger a sample size, the closer those	A samp	ole s	size	of	100	giv	es a	mo	re
Size	probabilities will be to the true probability.	reliable	res	ult	thar	n a s	sam	ple	size	of 10.

Topic: Probability (Trees and Venns)

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{-}$ red
	probabilities.	1 3
		$\frac{1}{5}$ red 2
	All branches must add up to 1 when	z 4 2 black
	adding downwards.	
	This is because the probability of	4 3 red
	something not happening is 1 minus the	- black
	probability that it does happen.	2 black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		' <u>Without replacement</u> '
4. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	$P(Blonde \cup Right Handed)$ refers to the
	event A <u>or</u> B <u>or</u> both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
	$P(A \cap B)$ refers to the probability that	P(Blonde \cap Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. AND rule	When two events, A and B, are	What is the probability of rolling a 4
for Probability	independent:	and flipping a Tails?
	D(A = d D) = D(A) + D(D)	D(A = dT = (1 -) D(A) = D(T = (1 -))
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } I \text{ alls}) = P(4) \times P(I \text{ alls})$
		$=\frac{1}{1}\times\frac{1}{2}=\frac{1}{12}$
6 OP mile for	When two events A and D are mutually	<u>6 2 12</u> What is the probability of rolling a 2 or
Drobability	ovelusivo:	rolling a 52
FIODADIIIty	CACIUSIVE.	Toming a 5?
	D(A or P) = D(A) + D(P)	P(2 or 5) = P(2) + P(5)
	$\mathbf{r}(\mathbf{A} \mathbf{U} \mathbf{D}) - \mathbf{r}(\mathbf{A}) + \mathbf{r}(\mathbf{D})$	$\begin{array}{c} r(2 01 3) - r(2) + r(3) \\ 1 1 2 1 \end{array}$
		$=\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=\frac{1}{2}$
		6663

Tibshelf Community School

Topic: Ratio

57 C

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
2 Proportion	Propertion compares the size of one part to	In a class with 12 boys and 0 girls the
2. Froportion	the size of the whole	In a class with 15 boys and 9 girls, the
		proportion of boys is $\frac{1}{2^2}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{3}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
		7
4. Ratios in the	Divide both parts of the ratio by one of the	$5:7 = 1:\frac{7}{5}$ in the form $1:n$
$n \cdot 1$	numbers to make one part equal 1.	$5:7 = \frac{5}{2}:1$ in the form n : 1
$n \cdot 1$		7
5. Sharing in a	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.
Ratio	2. Divide the amount to be shared by this	
	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	$3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$
	Use only if you know the total	£30:£20:£10
6 Proportional	Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	
8	situation.	30 minutes 60 pages
		? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	X 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	the single unit value	Find now much sugar is needed to make 5 cakes
	the single time value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had ± 16 , found out the total
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
		$3 + 2 + 5 = 10$ parts, so $8 \ge 10 = \text{\pounds}80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic: Proportion

	*
Definition/Tips	Example
If two quantities are in direct proportion, as one increases , the other increases by the same percentage .	$y \land y = kx$
If y is directly proportional to x, this can be written as $y \propto x$	x
An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
If two quantities are inversely proportional, as one increases , the other decreases by the same percentage .	$y = \frac{k}{x}$
If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
An equation of the form $y = \frac{k}{r}$ represents	Ļ
inverse proportion.	
Direct : $y = kx$ or $y \propto x$ Inverse : $y = \frac{k}{r}$ or $y \propto \frac{1}{r}$	p is directly proportional to q. When $p = 12$, $q = 4$. Find p when $q = 20$.
 Solve to find k using the pair of values in the question. Rewrite the equation using the k you have just found. Substitute the other given value from the question in to the equation to find the missing value. 	1. $p = kq$ 12 = k x 4 so k = 3 2. $p = 3q$ 3. $p = 3 \times 20 = 60$, so $p = 60$
Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs $y = 3x^2$ y = 2x $y = 0.3x^3$
Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at	Inverse Proportion Graphs $y = \frac{2}{s}$ $y = \frac{3}{s^2}$

Topic/Skill

1. Direct

Proportion

2. Inverse

Proportion

3. Using

4. Direct

Proportion

5. Inverse

Proportion

with powers

the origin.

with powers

proportionality formulae

Topic: Calculating with Percentages

₩²⁵

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \ge 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like ' before' or	
	'original'	$90\% = \pounds 48.60$
		$1\% = \pounds 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		$10\% \text{ of } \pounds 1000 = \pounds 100$
		Interest = $3 \times \pounds 100 = \pounds 300$