Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:
	integer.	
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)		and 9 exactly.
5. Prime	A number with exactly two factors.	The first ten prime numbers are:
Number		
	A number that can only be divided by itself and one.	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	The number 1 is not prime, as it only has one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		
		2,3
7. Product of	Finding out which prime numbers	$36 = 2 \times 2 \times 3 \times 3$
Prime Factors	multiply together to make the original	
	number.	(2) 18 or $2^2 \times 3^2$
	Use a prime factor tree.	2 9
	Also known as 'prime factorisation'.	3 3

Topic: Accuracy

Topic/Skill	Definition/Tips	Example		
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is		
	number.	in the 'tens' column.		
2. Place Value	The names of the columns that determine	PLACE VALUE CHART		
Columns	the value of each digit.	Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Cores Ones Cores Tens Cores Tens Tenths Hundredths Ten-Thousandths Ten-Thousandths Millionths		
		Millions Hundred Thousands Ten Thousands Thousands Hundreds Comal Point Decimal Point Tens Tens Thousandths Ten-Thousandths Millionths		
	The 'ones' column is also known as the	Millions Hundred Thou Ten Thousands Thousands Hundreds Tens Ones Ones Decimal Point Tens Hundredths Thousandths Thousands Ten-Thousand Millionths		
	'units' column.	M H H H H H H H H H H H H H H H H H H H		
3. Rounding	To make a number simpler but keep its	74 rounded to the nearest ten is 70,		
	value close to what it was.	because 74 is closer to 70 than 80.		
	If the digit to the right of the rounding	152,879 rounded to the nearest		
	digit is less than 5, round down.	thousand is 153,000.		
	If the digit to the right of the rounding			
	digit is 5 or more, round up .			
4. Decimal	The position of a digit to the right of a	In the number 0.372, the 7 is in the		
Place	decimal point.	second decimal place.		
		0.372 rounded to two decimal places is		
		0.37, because the 2 tells us to round down.		
		down.		
		Careful with money - don't write £27.4,		
		instead write £27.40		
5. Significant	The significant figures of a number are the	In the number 0.00821, the first		
Figure	digits which carry meaning (ie. are	significant figure is the 8.		
8	significant) to the size of the number.	0 0		
		In the number 2.740, the 0 is not a		
	The first significant figure of a number	significant figure.		
	cannot be zero.			
		0.00821 rounded to 2 significant figures		
	In a number with a decimal, trailing zeros	is 0.0082.		
	are not significant.			
		19357 rounded to 3 significant figures		
		is 19400. We need to include the two		
		zeros at the end to keep the digits in the		
		same place value columns.		
6. Truncation	A method of approximating a decimal	3.14159265 can be truncated to		
	number by dropping all decimal places	3.1415 (note that if it had been		
7. Б.	past a certain point without rounding .	rounded, it would become 3.1416)		
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal		
Interval	have taken before being rounded or	place.		
	truncated.	The error interval is:		
	An error interval is written using			
	inequalities, with a lower bound and an	$0.55 \le x < 0.65$		
	upper bound.	$0.53 \ge x < 0.05$		
	upper bound.	The lower bound is 0.55		
		The upper bound is 0.65		

	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer.	An estimate for the height of a man is 1.8 metres.
9. Approximation	 When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. ≈ means 'approximately equal to' 	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers. π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer , whose value cannot be determined exactly. Surds have infinite non-recurring decimals .	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2} = 1.41421356$ which never repeats.
12. Rules of Surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$ $\sqrt{a} \times \sqrt{a} = a$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$ $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$ $\sqrt{7} \times \sqrt{7} = 7$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}$ $\frac{6}{3 + \sqrt{7}} = \frac{6(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})}$ $= \frac{18 - 6\sqrt{7}}{9 - 7}$ $= \frac{18 - 6\sqrt{7}}{2} = 9 - 3\sqrt{7}$

Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
1	another number.	V 00 0
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	$2^{3} = 2 \times 2 \times 2 = 8$ $\sqrt[3]{125} = 5$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	
		$3^{1}_{2} = 3$
		$3^2_{2} = 9$
		$3^3 = 27$
		$3^4 = 81$ etc.
7.	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
Multiplication	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
Index Law	m , n $m+n$	$4x^5 \times 2x^8 = 8x^{13}$
0 D ² · · ·	$a^m \times a^n = a^{m+n}$	$15^7 \div 15^4 = 15^3$
8. Division	When dividing with the same base (number	
Index Law	or letter), subtract the powers .	$x^9 \div x^2 = x^7$ $20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	$20a^{11} \div 5a^{\circ} = 4a^{\circ}$
9. Brackets	$\frac{u - u}{When raising a power to another power,}$	$(a^2)^5 - a^{10}$
Index Laws	multiply the powers together.	$(y^2)^5 = y^{10}$
macx Laws	indupity the powers together.	$(6^3)^4 = 6^{12}$ $(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	(5x) = 125x
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	p^{p-p} $p^{0} = 1$	
11. Negative	A negative power performs the reciprocal.	_ 1 1
Powers		$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
1011012	$a^{-m} = \frac{1}{a^m}$	5 9
12. Fractional	The denominator of a fractional power acts	$27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = 3^2 = 9$
Powers	as a 'root'.	$273 = (\sqrt{27})^2 = 3^2 = 9^2$
		3
	The numerator of a fractional power acts as	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	a normal power.	$\left(\frac{16}{16}\right) = \left(\frac{1}{\sqrt{16}}\right) = \left(\frac{1}{4}\right) = \frac{1}{64}$
	$a\frac{m}{n} = \left(\sqrt[n]{a}\right)^m$	
	$u^n - (v^n)$	

ા જુલ

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \text{ x } 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \ge 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Higher Only Topics

୍ୟ 🏶 ଅନୁସ

Topic/Skill	Definition/Tips	Example	
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender	
Data	Quantitative Data – numerical data	etc.	
	Continuous Data – data that can take any numerical value within a given range.	Continuous Data – weight, voltage etc.	
	Discrete Data – data that can take only specific values within a given range.	Discrete Data – number of children, shoe size etc.	
2. Grouped	Data that has been bundled in to		
Data	categories.		
Duiu		$10 \leqslant l < 12 \qquad \qquad 5$	
	Seen in grouped frequency tables,	$12 \leqslant l < 17 \qquad 53$	
	histograms, cumulative frequency etc.		
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a	
/Secondary Data	specific purpose.	student for their own research project.	
	Secondary Data – collected by someone else for another purpose.	Secondary Data – Census data used to analyse link between education and earnings.	
4. Mean	Add up the values and divide by how many values there are.	The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$	
5. Mean from a Table	 Multiply Frequency by values or midpoints Add up these values 	Height in cm Frequency Midpoint $F \times M$ $0 < h \le 10$ 8 5 $8 \times 5 = 40$ $10 < h \le 30$ 10 20 $10 \times 20 = 200$ $30 < h \le 40$ 6 35 $6 \times 35 = 210$ Total 24 Ignore! 450 Estimated Mean Mean Mean Mean Mean	
	4. Divide this total by the Total Frequency	height: $450 \div 24 =$ 18.75cm	
	If grouped data is used, the answer will be an estimate .		
6. Median Value	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6	
	Put the data in order and find the middle one.	Ordered: 2, 3, 4, 5, 6, 6, 7	
	If there are two middle values , find the number half way between them by adding them together and dividing by 2 .	Median = 5	
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the position of	If the total frequency is 15, the median	
from a Table	the median. $\frac{1}{2}$ to find the position of the median.	will be the $\left(\frac{15+1}{2}\right) = 8th$ position	
	<i>n</i> is the total frequency.		
8. Mode /Modal Value	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4	
	Can have more than one mode (called bi- modal or multi-modal) or no mode (if all values appear once)	Mode = 4	
9. Range	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.	
		Range = 102-3 = 99	

	Range is a 'measure of spread'. The smaller	
	the range the more <u>consistent</u> the data.	
10. Outlier	A value that 'lies outside' most of the other	12 Outlier
	values in a set of data.	
	An outlier is much smaller or much	8
	larger than the other values in a set of data.	4
	larger than the other values in a set of data.	2
		0
		0 20 40 60 80 100
11. Lower	Divides the bottom half of the data into	Find the lower quartile of: 2, <u>3</u> , 4, 5, 6,
Quartile	two halves.	6,7
	$LQ = Q_1 = \frac{(n+1)}{4} th \text{ value}$	$0 - {}^{(7+1)} - 2md$ yelve $\rightarrow 2$
		$Q_1 = \frac{(7+1)}{4} = 2nd \text{ value } \rightarrow 3$
12. Lower	Divides the top half of the data into two	Find the upper quartile of: $2, 3, 4, 5, 6$,
Quartile	halves.	<u>6</u> , 7
	$UQ = Q_3 = \frac{3(n+1)}{4} th \text{ value}$	$0 = \frac{3(7+1)}{2} = 6 \pm h \text{ using } \rightarrow 6$
	A	$Q_3 = \frac{3(7+1)}{4} = 6th \text{ value } \rightarrow 6$
13.	The difference between the upper quartile	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	and lower quartile.	
Range		$IQR = Q_3 - Q_1 = 6 - 3 = 3$
	$IQR = Q_3 - Q_1$	
	The smaller the interquartile range, the	
	more consistent the data.	

Topic: Representing Data

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHH 11	7
		2	1111	5
		3	JHH I	6
		4	JHH	5
		5		3
		Total	111	26
2. Bar Chart	Represents data as vertical blocks. $x - axis$ shows the type of data $y - axis$ shows the frequency for eachtype of dataEach bar should be the same widthThere should be gaps between each bar	14 12- 10- 8- 6- 4-		
	Remember to label each axis.	0 0 Nu	1 2 3 umber of pets o	4 wned
3. Types of Bar Chart	Compound/Composite Bar Charts show data stacked on top of each other.	Weight (gm) 40 0 0 0 0 0 0 0 0 0 0 0 0 0		
	Comparative/Dual Bar Charts show data side by side.	50 40 40 30 20 10 Jan Feb Mar Apr May Month Dual Bar Chart		
4. Pie Chart	Used for showing how data breaks down			
	into its constituent parts.		Juash	
	When drawing a pie chart, divide 360° by the total frequency . This will tell you how many degrees to use for the frequency of each category.	Tennis 40 66 Hockey	144°	
	Remember to label the category that each sector in the pie chart represents.	If there are 40 pe each person will of the pie chart.		

5. Pictogram	Uses pictures or symbols to show the value of the data.	Black 🛱 🛱 🖗
	A pictogram must have a key.	Green \oint $= 4 \text{ cars}$ Others \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	$ \begin{array}{c} 14 \\ 12 \\ 10 \\ 8 \\ 6 \\ 4 \\ 2 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 9 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$
7. Two Way Tables	A table that organises data around two categories. Fill out the information step by step using	Question: Complete the 2 way table below. Left Handed Right Handed Total Boys 10 58 Girls 58 Total 84 100 Answer: Step 1, fill out the easy parts (the totals) Left Handed Right Handed
	the information given. Make sure all the totals add up for all columns and rows.	Boys 10 48 58 Girls 42 Total 16 84 100 Answer: Step 2, fill out the remaining parts Left Handed Right Handed Total Boys 10 48 58 Girls 6 36 42 Total 16 84 100
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot.A box plot can be drawn independently or from a cumulative frequency diagram.	Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper quartile is 17. Draw a box plot to represent this information.
9. Comparing Box Plots	 Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. 	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'
	You must compare box plots in the context of the problem.	

ې نې د ا

Topic: Scatter Graphs

Topic/Skill	Definition/Tips	Example
1. Correlation	Correlation between two sets of data means	There is correlation between
	they are connected in some way.	temperature and the number of ice
		creams sold.
2. Causality	When one variable influences another	The more hours you work at a
2. Caasanty	variable.	particular job (paid hourly), the higher
	variable.	your income <u>from that job</u> will be.
3. Positive	As one value increases the other value	your meone <u>mont that job</u> will be.
Correlation	increases.	· · · · · · · · · · · · · · · · · · ·
Conclation	IIICI eases.	-
		Positive Correlation
		Positive Correlation
4. Negative	As one value increases the other value	+
Correlation	decreases.	
Conclation	ucci cases.	
		, Outlier
		Negative Correlation
		regative correlation
5. No	There is no linear relationship between	
Correlation	the two.	> X × × ×
Conclution		× × × × • × × × × ×
		No Correlation
6. Strong	When two sets of data are closely linked .	1
Correlation		
		Strong
		Positive Correlation
7. Weak	When two sets of data have correlation, but	t
Correlation		
Correlation	are not closely linked.	
		Weak
		Positive
0.0		
8. Scatter	A graph in which values of two variables	Seatingstate for equality of environmental AXX
Graph	are plotted along two axes to compare	
	them and see if there is any connection	
	between them.	
0 Line of Dest	A straight line that hast non-maganets the	
9. Line of Best	A straight line that best represents the	x x x
Fit	data on a scatter graph.	x x x x
10. Outlier	A value that 'lies outside' most of the other	12 Outlier
	values in a set of data.	10
	An outlier is much smaller or much	
	larger than the other values in a set of data.	4
		2
		0 20 40 60 80 100
		- 20 40 DU 80 IUU

Topic: Histograms and Cumulative Frequency

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
Topic/Skill 1. Histograms 2. Interpreting Histograms	Definition/TipsA visual way to display frequency data using bars.Bars can be unequal in width.Histograms show frequency density on the y-axis, not frequency. $Frequency Density = \frac{Frequency}{Class Width}$ $\boxed{ Height(cm) Frequency}_{0 < h \le 10 8} \\ 10 < h \le 30 6} \\ 30 < h \le 45 15 \\ 45 < h \le 70 5 \end{bmatrix}$ The area of the bar is proportional to the frequency of that class interval. $Frequency = Freq Density \\ \times Class Width$	Example Frequency Density (FD) $8 \div 5 = 1.6$ $6 \div 20 = 0.3$ $15 \div 15 = 1$ $5 \div 25 = 0.2$ A histogram shows information about the heights of a number of plants. 4 plants were less than 5cm tall. Find the number of plants more than 5cm tall.
 3. Cumulative Frequency 4. Cumulative Frequency Diagram 	Cumulative Frequency is a running total.AgeFrequency $0 < a \le 10$ 15 $10 < a \le 40$ 35 $40 < a \le 50$ 10A cumulative frequency diagram is a curve that goes up. It looks a little like a stretched-out S shape.Plot the cumulative frequencies at the endpoint of each interval.	Above 5cm: 1.2 x 10 + 2.4 x 15 = 12 + 36 = 48 Cumulative Frequency 15 15 + 35 = 50 50 + 10 = 60 CF_{20}^{30} CF_{20}^{30} CF_{20}^{30} 10^{-1} 10^{-20} 30^{-40} 10^{-50} Height

5. Quartiles from Cumulative Frequency Diagram	 Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data. 	IQR = 37 - 18 = 19	
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.	

Higher Only Topics

Tibshelf Community School