Topic: Quadratics

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Factorising	When a quadratic expression is in the form	$x^{2} + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add to give b and multiply to give c.	(because 5 and 2 add to give 7 and multiply to give 10)
		$x^2 + 2x - 8 = (x + 4)(x - 2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a negative solution .	$x = \pm 7$
5. Solving	Factorise and then solve = 0.	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(<i>a</i> = 1)	Make sure the equation = 0 before factorising.	x = -5 or x = 2
7. Quadratic	A 'U-shaped' curve called a parabola.	y ↑ y = x ² -4x-5
Graph	The equation is of the form	
	$y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$.	-1 5 x
	If $a < 0$, the parabola is upside down .	(2, -9)
8. Roots of a Quadratic	A root is a solution .	4
-	The roots of a quadratic are the <i>x</i> -intercepts of the quadratic graph.	2
	mercepts of the quadratic graph.	-2 -1 1 2 3 4 -2 -1 -2222222

9. Turning Point of a Quadratic	A turning point is the point where a quadratic turns .	
	On a positive parabola , the turning point is called a minimum . On a negative parabola , the turning point is called a maximum .	

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
2. Inverse	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Opposite	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction.
		The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	Be careful of $5x^2$. You need to square first, then multiply by 5.	2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous	involving two or more variables (letters).	3x - y = 8
Equations		
	The solutions to simultaneous equations	x = 3
A XX 1 1 1	satisfy both/all of the equations.	y = 1
2. Variable	A symbol, usually a letter, which	In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
3. Coefficient	unknown.	6z
5. Coefficient	A number used to multiply a variable.	02
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign	
	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	
	5. Solve the equation you get.6. Check that the two values you get satisfy	Substitute $y = 2$ in to equation.
	both of the original equations.	$5x + 2 \times 2 = 9$
	obtil of the original equations.	$5x + 2 \times 2 = 9$ 5x + 4 = 9
		5x + 4 - 5 5x = 5
		3x = 3 $x = 1$
		$\lambda = 1$
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of the	
Substitution)	rearranged equation into the other equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	3. Expand and solve this equation.	
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	 x = equation. 5. Check that the two values you get 	$S_{2} = 1$
	satisfy both of the original equations.	Solve: $3x + 8x + 12 = 1$ 11x = -11
		$\begin{array}{c} 11x = -11 \\ x = -1 \end{array}$
		x1
		Substitute: $y = 2 \times -1 + 3$
		y = 1
		-
		Solution: $x = -1$, $y = 1$

6. Solving Simultaneous Equations (Graphically)	Draw the graphs of the two equations.The solutions will be where the lines meet.The solution can be written as a coordinate.	y = 2x - 1
		y = 5 - x and $y = 2x - 1$. They meet at the point with coordinates (2,3) so the answer is $x = 2$ and $y = 3$

Tibshelf Community School

Topic: Circumference and Area

	-		-	
	3	2	1	ł
			1.	
1.		1	÷Υ	
	λ.	1.2	ē.	
	1	<u> </u>	· •	

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \mathbf{S} \cdot \mathbf{VAR} & \mathbf{p} & \mathbf{D} \mathbf{ISTR} & \mathbf{n} & \mathbf{r} \cdot \mathbf{Z} \partial_{\mathbf{T}} \mathbf{Pol} \mathbf{r} \\ \hline 2 & 3 & \mathbf{r} \\ \mathbf{Ran}^{\#} & \pi & \mathbf{DRG} \mathbf{r} \\ \bullet & \mathbf{EXP} & \mathbf{Ans} \end{array}$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

		•
8. Surface Area of a Cylinder	Curved Surface Area = πdh or $2\pi rh$ Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
9. Surface Area of a Cone	Curved Surface Area = πrl where $l = slant height$	$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
	Total SA = $\pi r l + \pi r^2$	5m
	You may need to use Pythagoras' Theorem to find the slant height	$\frac{3m}{Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi}$
10. Surface Area of a Sphere	$SA = 4\pi r^2$ Look out for hemispheres – halve the SA of	Find the surface area of a sphere with radius 3cm.
11. Volume of	a sphere and add on a circle (πr^2) $V = \pi r^2 h$	$SA = 4\pi(3)^2 = 36\pi cm^2$
a Cylinder	$\mathbf{v} = \mathbf{n}\mathbf{r} - \mathbf{n}$	$5cm$ $V = \pi(4)(5)$ $= 62.8cm^{3}$
12. Volume of a Cone	$V = \frac{1}{3}\pi r^2 h$	$V = \frac{1}{3}\pi(4)(5)$ $= 20.9 cm^{3}$
13. Volume of a Pyramid	$Volume = \frac{1}{3}Bh$ where B = area of the base	7cm
14. Volume of	$V = \frac{4}{3}\pi r^3$	$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^3$ Find the volume of a sphere with
a Sphere	$V = \frac{1}{3}\pi r^{2}$ Look out for hemispheres – just halve the volume of a sphere.	diameter 10cm. $V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$

Topic: Vectors

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2. Vector Notation	A vector can be written in 3 ways: a or \overrightarrow{AB} or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Magnitude	Magnitude is defined as the length of a vector.	3 Magnitude (length) can be calculated using Pythagoras Theorem: 3² + 4² = 25 J25 = 5
6. Equal Vectors	If two vectors have the same magnitude and direction , they are equal .	
7. Parallel Vectors	Parallel vectors are multiples of each other.	2 a+b and 4 a +2 b are parallel as they are multiple of each other.

8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	A C
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: 3a + 2b = $= 3\binom{2}{1} + 2\binom{4}{-1}$ $= \binom{6}{3} + \binom{8}{-2}$ $= \binom{14}{1}$

Topic: Trigonometry

Tonia/Skill	Definition/Tips					Example		
Topic/Skill 1. Exact Values			<u>108</u> 30°	45°	60°	90°		
for Angles in	sin	0	1		-	1	30*	
Trigonometry	5111	U	$\frac{1}{2}$	$\sqrt{2}$	$\sqrt{3}$	1	45'	
ingenenieu y		1		2	$\begin{array}{c c} 2\\ 1\\ \hline 2\\ \end{array}$	0	1 $\sqrt{2}$ $\sqrt{3}$ 2	
	cos	1	$\sqrt{3}$	$\sqrt{2}$	1	0		
			$ \frac{\overline{2}}{1} \\ \overline{\sqrt{3}} $	2			45* _ 80*	
	tan	0	1	1	$\sqrt{3}$			
2. Trigonometry	The st	udy of	triang	les.				
3. Hypotenuse	The lo	ngest s	side of a	a right	-angleo	1		
	triang			U	U		hypotenuse	
	Is alwa	ays <mark>op</mark> j	posite t	he righ	t angle	.		
4. Adjacent	Next t	0					P N	
							Hypotenuse	
							odd	
							R Adjacent Q	
5.	Use S	OHCA	НТОА	ι.				
Trigonometric	$\sin\theta = \frac{\theta}{H}$							
Formulae						x		
	JIII O – H							
	A						11cm	
	$\cos \theta = \frac{A}{H}$						Use 'Opposite' and 'Adjacent', so use	
	Н						'tan'	
	0							
	$\tan \theta = \frac{\theta}{A}$					$\tan 35 = \frac{x}{11}$		
							$x = 11 \tan 35 = 7.70 cm$	
	/	\wedge	/		1			
		0	/	A	/	0 \		
	S	H	C	H	Т	A	7 <i>cm</i>	
	When	finding	a miss	ing on		the		
				sing ang			x	
	'inverse' trigonometric function by pressing the 'shift' button on the calculator.					5cm		
						Use 'Adjacent' and 'Hypotenuse', so		
						use 'cos'		
						$\cos x = \frac{5}{7}$		
							$\cos x = \frac{1}{7}$	
							. F .	
						$x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$		
						(7)		