Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = $6x - 2y + 3$ $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not $2x3=6$
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by 'taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers . Be careful of $5x^2$. You need to square first, then multiply by 5.	$a = 3, b = 2 \text{ and } c = 5. \text{ Find:}$ $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$ $3. 7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Iteration

ी 🏶 अङ्ग

Topic/Skill	Definition/Tips	Example
1. Iteration	The act of repeating a process over and over again, often with the aim of approximating a desired result more closely. Recursive Notation: $x_{n+1} = \sqrt{3x_n + 6}$	$x_{1} = 4$ $x_{2} = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_{3} = \sqrt{3 \times 4.242640} \dots + 6$ $= 4.357576 \dots$
2. Iterative Method	To create an iterative formula, rearrange an equation with more than one x term to make one of the x terms the subject. You will be given the first value to substitute in, often called x_1 . Keep substituting in your previous answer until your answers are the same to a certain degree of accuracy. This is called converging to a limit. Use the 'ANS' button on your calculator to keep substituting in the previous answer.	Use an iterative formula to find the positive root of $x^2 - 3x - 6 = 0$ to 3 decimal places. $x_1 = 4$ Answer: $x^2 = 3x + 6$ $x = \sqrt{3x} + 6$ So $x_{n+1} = \sqrt{3x_n + 6}$ $x_1 = 4$ $x_2 = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_3 = \sqrt{3 \times 4.242640 \dots + 6}$ $= 4.357576 \dots$ Keep repeating $x_7 = 4.372068 \dots = 4.372 (3dp)$ $x_8 = 4.372208 \dots = 4.372 (3dp)$ So answer is $x = 4.372 (3dp)$

Topic: Sequences

			1.4	1
	÷,	Ì	- 1	
		УG	<u>α</u>	
-		2	5	/

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	
		Sequence is: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n - 1$
	term that is in the nth position of the	The 100 th terms is 2 × 100 $-1 - 200$
	sequence.	The 100 th term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a	
	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4n
	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
		to get 3.
6 Fibonacci	A sequence where the next number is found	nth term = $4n - 1$ The Fibernessi sequence is:
type sequences	hy adding up the previous two terms	1 1 2 3 5 8 13 21 34
type sequences	by adding up the previous two terms	1,1,2,3,3,0,13,21,37
		An example of a Fibonacci-type
		sequence is:
		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
	a number called the common ratio , r .	The common ratio is 5
		Another example of a geometric
		sequence is:
		8127. 93. 1
		The common ratio is $-\frac{1}{2}$
8 Quadratic	A sequence of numbers where the second	2 6 12 20 30 42
Sequence	difference is constant	
	A quadratic sequence will have a n^2 term.	+2 +2 +2 +2
9. nth term of a	ar ⁿ⁻¹	The nth term of 2, 10, 50, 250 Is
geometric		
sequence	where a is the first term and r is the	$2 \times 5^{n-1}$
	common ratio	

10 1 . 0		
10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4 Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4 7 14 25 40
	the question	$2m^2$ 2 8 18 22 50
	5. Find the will terms of this act of much and	2π 2, 6, 16, 52, 50 Differences 2, 1, 4, 7, 10
	5. Find the numbers of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	
	nth term of the quadratic sequence.	Nth term of this set of numbers is
		-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
11. Triangular	The sequence which comes from a pattern	1 2 6 10
numbers	of dots that form a triangle.	1 3 6 10
	1 3 6 10 15 21	
	1, 3, 0, 10, 13, 41	

Higher Only Topics

Tibshelf Community School

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	• Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	• Rotational symmetry of order four	
2. Rectangle	Two pairs of equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	1
	angles	
	• Two lines of symmetry	
	 Rotational symmetry of order two 	
3. Rhombus	 Four equal sides 	\frown
	 Diagonally opposite angles are equal 	\times \times
	 Opposite sides parallel 	$\langle \rangle$
	• Diagonals bisect each other at right	\searrow
	angles	
	• Two lines of symmetry	~
	 Rotational symmetry of order two 	
4.	 Two pairs of equal sides 	
Parallelogram	 Diagonally opposite angles are equal 	
	 Opposite sides parallel 	F F
	• Diagonals bisect each other, not at right	
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	***
	length	$\langle \cdot \rangle$
	• One pair of diagonally opposite angles	
	are equal (where different length sides	$\chi \neq$
	meet)	
	• Diagonais intersect at right angles, but	*
	do not disect	
	• One line of symmetry	
6 Transver	• No rotational symmetry	
o. Trapezium	• Une pair of parallel sides	
	• No lines of symmetry	
	 No rotational symmetry 	

Special Case: Isosceles Trapeziums have one line of symmetry.

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
	Units include: <i>mm, cm, m</i> etc.	5 cm
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a	Length x Width	9 cm
Rectangle		4 cm $A = 36 \text{ cm}^2$
4. Area of a	Base x Perpendicular Height	
Parallelogram	Not the slant height.	4 cm 3 cm $A = 21 cm^2$
5. Area of a Triangle	Base x Height ÷ 2	9 4 5 $A = 24cm^2$
6. Area of a	Split in to two triangles and use the	
Kite	method above.	$A = 8.8m^2$
7. Area of a	(a+b)	6 cm
Trapezium	$\frac{1}{2} \times n$	
	"Half the sum of the parallel side times the	
	height between them. That is how you calculate the area of a trapezium"	$\longleftarrow \qquad 16 \text{ cm} \qquad \Rightarrow A = 55 cm^2$
8. Compound	A shape made up of a combination of	
Shape	other known shapes put together.	

Topic: Circumference and Area

5	۲. P	Υ.	š
		10	
	N.	×γ	
	1	Э,	1
1	-	~	

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} r & r & r \\ \hline 2 \\ \hline 2 \\ \hline 3 \\ \hline 7 \\ 7 \\$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	1
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = πrl	//
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Volume

		-
A.L.	X	Per la
٠,	~	, ``
	s	•
	~	1
	ALL .	ૻઙૢૼ

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a Cube/Cuboid	V = Length imes Width imes Height V = L imes W imes H	6cm
	You can also use the Volume of a Prism formula for a cube/cuboid.	3 cm
		volume = $6 \times 5 \times 3$ = 90 cm^3
3. Prism	A prism is a 3D shape whose cross section is the same throughout.	Triangle Prism Pentagonal Prism
4. Cross Section	The cross section is the shape that continues all the way through the prism.	Cross Section
5. Volume of a Prism	V = Area of Cross Section imes Length V = A imes L	Area of Cross Section
6. Volume of a Cylinder	$V = \pi r^2 h$	$5cm \qquad \boxed{2cm} \qquad \qquad$
7. Volume of a Cone	$V = \frac{1}{3}\pi r^2 h$	$V = \frac{1}{3}\pi(4)(5)$ $= 20.9 cm^{3}$

	A	1	2
1	۶.		e.h
L	د	S	ς,
		ĉ	/

8. Volume of a Pyramid	$Volume = \frac{1}{3}Bh$ where B = area of the base	r_{em}
9. Volume of a Sphere	$V = \frac{4}{3}\pi r^3$ Look out for hemispheres – just halve the	$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84 cm^{\circ}$ Find the volume of a sphere with diameter 10cm. $V = \frac{4}{3} \times 6 \times 6 \times 7 = 84 cm^{\circ}$
10. Frustums	 volume of a sphere. A frustum is a solid (usually a cone or pyramid) with the top removed. Find the volume of the whole shape, then take away the volume of the small cone/pyramid removed at the top. 	$V = \frac{1}{3}\pi(5)^3 = \frac{1}{3}cm^3$
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$ $= 700\pi cm^3$

Higher Only Topics

Tibshelf Community School