Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers. 'add', 'plus', 'sum'	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one . 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of $20 \div 6$ is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever.	$\frac{1}{3} = 0.333 \dots = 0.\dot{3}$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or	$\frac{1}{7} = 0.142857142857 \dots = 0.\dot{1}4285\dot{7}$

dots over the first and last digit of the repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$

1. T. L.

		Topic: Accuracy
Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a number.	In 726, the value of the 2 is 20, as it is in the 'tens' column.
2. Place Value Columns	The names of the columns that determine the value of each digit .	Millions Millions Millions Millions Hundred Thousands Thousands Thousands Thousands Hundreds Hundreds Eens Cones C
	The 'ones' column is also known as the 'units' column.	
3. Rounding	To make a number simpler but keep its value close to what it was.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80.
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.
4. Decimal	The position of a digit to the right of a	In the number 0.372, the 7 is in the
Place	decimal point.	second decimal place.
		0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down.
		Careful with money - don't write £27.4, instead write £27.40
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number.	In the number 0.00821, the first significant figure is the 8.
	The first significant figure of a number cannot be zero.	In the number 2.740, the 0 is not a significant figure.
	In a number with a decimal, trailing zeros are not significant.	0.00821 rounded to 2 significant figures is 0.0082.
		19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.
6. Truncation	A method of approximating a decimal	3.14159265 can be truncated to
	number by dropping all decimal places	3.1415 (note that if it had been
	past a certain point without rounding.	rounded, it would become 3.1416)
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal
Interval	have taken before being rounded or truncated.	place.
	An error interval is written using inequalities, with a lower bound and an upper bound .	The error interval is: $0.55 \le x < 0.65$
	apper sound.	The lower bound is 0.55
		The upper bound is 0.65
		"PP-1 COMIN IS 0100

		~
	Note that the lower bound inequality can be 'equal to', but the upper bound cannot be 'equal to'.	
8. Estimate	To find something close to the correct answer .	An estimate for the height of a man is 1.8 metres.
9. Approximation	 When using approximations to estimate the solution to a calculation, round each number in the calculation to 1 significant figure. ≈ means 'approximately equal to' 	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$ 'Note that dividing by 0.5 is the same as multiplying by 2'
10. Rational Number	A number of the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$. A number that cannot be written in this form is called an 'irrational' number	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational numbers. π , $\sqrt{2}$ are examples of an irrational numbers.
11. Surd	The irrational number that is a root of a positive integer , whose value cannot be determined exactly. Surds have infinite non-recurring decimals .	$\sqrt{2}$ is a surd because it is a root which cannot be determined exactly. $\sqrt{2} = 1.41421356$ which never repeats.
12. Rules of Surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$ $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$ $a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$ $\sqrt{a} \times \sqrt{a} = a$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$ $\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$ $\sqrt{7} \times \sqrt{7} = 7$
13. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{7} \times \sqrt{7} = 7}{\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}}$ $\frac{6}{3 + \sqrt{7}} = \frac{6(3 - \sqrt{7})}{(3 + \sqrt{7})(3 - \sqrt{7})}$ $= \frac{18 - 6\sqrt{7}}{9 - 7}$ $= \frac{18 - 6\sqrt{7}}{2} = 9 - 3\sqrt{7}$

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
2. Inverse	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Opposite	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction.
		The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	Be careful of $5x^2$. You need to square first, then multiply by 5.	2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Subject: Maths

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using	$3x + 2$ or $5y^2$
	symbols, numbers or letters,	
2. Equation	A statement showing that two expressions	2y - 17 = 15
	are equal	
3. Identity	An equation that is true for all values of	$2x \equiv x + x$
	the variables	
4 Γ	An identity uses the symbol: \equiv	
4. Formula	Shows the relationship between two or	Area of a rectangle = length x width or $A = L \times W$
	more variables	A= LxW
5. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
6. Odds and	An even number is a multiple of 2	If n is an integer (whole number):
Evens	An odd number is an integer which is not a	
	multiple of 2.	An even number can be represented by
		2n or 2m etc.
		A 11 1 1 (11
		An odd number can be represented by
7. Consecutive	Whole numbers that follow each other in	2n-1 or 2n+1 or 2m+1 etc.
	order.	If n is an integer:
Integers	order.	n, n+1, n+2 etc. are consecutive
		integers.
8. Square	A term that is produced by multiply another	If n is an integer:
Terms	term by itself.	
	5	n^2 , m^2 etc. are square integers
9. Sum	The sum of two or more numbers is the	The sum of 4 and 6 is 10
	value you get when you add them together.	
10. Product	The product of two or more numbers is the	The product of 4 and 6 is 24
	value you get when you multiply them	
	together.	
11. Multiple	To show that an expression is a multiple of	$4n^2 + 8n - 12$ is a multiple of 4
	a number, you need to show that you can	because it can be written as:
	factor out the number.	
		$4(n^2 + 2n - 3)$

Topic: Iteration

্য 🏶 সন্ধ্রা

Subject: Maths

Topic/Skill	Definition/Tips	Example
1. Iteration	The act of repeating a process over and over again, often with the aim of approximating a desired result more closely.	$\begin{array}{c} x_1 = 4 \\ x_2 = \sqrt{3 \times 4 + 6} = 4.242640 \dots \\ x_3 = \sqrt{3 \times 4.242640 \dots + 6} \\ = 4.357576 \dots \end{array}$
	Recursive Notation: $x_{n+1} = \sqrt{3x_n + 6}$	

Topic: Algebraic Fractions

5 👬

Topic/Skill	Definition/Tips	Example
1. Algebraic	A fraction whose numerator and	6 <i>x</i>
Fraction	denominator are algebraic expressions.	$\overline{3x-1}$
2. Adding/ Subtracting	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is	$\frac{1}{x} + \frac{x}{2y}$
Algebraic	bd	$=\frac{1(2y)}{2xy} + \frac{x(x)}{2xy}$
Fractions	$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$	$=\frac{2y+x^2}{2xy}$
3. Multiplying Algebraic	Multiply the numerators together and the denominators together.	$\frac{x}{3} \times \frac{x+2}{x-2}$
Fractions		$=\frac{x(x+2)}{3(x-2)}$
	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$=\frac{1}{3(x-2)}$
	b d bd	$=\frac{x^2+2x}{3x-6}$
4. Dividing	Multiply the first fraction by the	x 2x
Algebraic	reciprocal of the second fraction.	$\overline{3} \div \overline{7}$
Fractions		$-\frac{x}{x}\times\frac{7}{7}$
	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	$\frac{\frac{x}{3} \div \frac{2x}{7}}{= \frac{x}{3} \times \frac{7}{2x}}$ $= \frac{\frac{x}{3} \times \frac{7}{2x}}{= \frac{7x}{6x} = \frac{7}{6}}$ $\frac{\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{x + 3}{2}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors .	$\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{x + 3}{2}$

Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	$1 \ centimetre = 10 \ millimetres$
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Length: mm, cm, m, km	
	Mass: mg, g, kg	
	Volume: ml, cl, l	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
	based on human quantities	1 gallon = 8 pints
	Length: inch, foot, yard, miles	
	Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	5 miles \approx 8 kilometres
Imperial Units	between metric and imperial units.	1 gallon \approx 4.5 litres
		2.2 pounds \approx 1 kilogram
		1 inch = 2.5 centimetres

Topic: Ratio

57 F

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
	Written using the ':' symbol.	
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the 13
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5: 10 = 1: 2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	
form $1 : n$ or	numbers to make one part equal 1.	$5:7 = 1:\frac{7}{5}$ in the form $1:n$
n:1	numbers to make one part equal 1.	$5:7 = \frac{5}{7}:1$ in the form n : 1
		,
5. Sharing in a	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.
Ratio	2. Divide the amount to be shared by this	2 + 2 + 1
	value to find the value of one part.	3 + 2 + 1 = 6 $60 \div 6 = 10$
	3. Multiply this value by each part of the ratio.	$3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$
	Tutto.	$\pounds 30: \pounds 20: \pounds 10$
	Use only if you know the total .	
6. Proportional	Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	30 minutes 60 pages
	situation.	? minutes 150 pages
	Identify and multiplicative link and use this	
	Identify one multiplicative link and use this to find missing quantities.	x 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		$2 \operatorname{calrag} = 450 \operatorname{c}$
		3 cakes = 450g So 1 cake = 150g (÷ by 3)
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had £16, found out the total
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
		3+2+5=10 parts, so 8 x 10 = £80
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
		5 cm
	Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	
2 4 100	The evenue of anone incide a share	P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a	Length x Width	9 cm
Rectangle		4 cm
		$4 - 26 \text{ sm}^2$
4. Area of a	Base x Perpendicular Height	$A = 36cm^2$
Parallelogram	Not the slant height.	4cm 3cm
		$A = 21cm^2$
5. Area of a	Base x Height ÷ 2	
Triangle		9 4 5
		$\begin{array}{c} 12 \\ A = 24cm^2 \end{array}$
6. Area of a	Split in to two triangles and use the	
Kite	method above.	
		2.2m
		≪ 8m>
		$A = 8.8m^2$
7. Area of a	$\frac{(a+b)}{2} \times h$	6 cm
Trapezium	2	5 cm
	"Half the sum of the parallel side, times the	
	height between them. That is how you	$\longleftarrow \qquad 16 \text{ cm} \qquad \Rightarrow A = 55 cm^2$
9 Cana 1	calculate the area of a trapezium"	
8. Compound Shape	A shape made up of a combination of other known shapes put together.	
Shape	other known shapes put together.	
		- +
		+

Topic: Volume

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of	
	space inside a solid shape.	
	Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a	$V = Length \times Width \times Height$	m
Cube/Cuboid	$V = L \times W \times H$	6cm
	You can also use the Volume of a Prism	3 cm
	formula for a cube/cuboid.	
		5cm
		volume = $6 \times 5 \times 3$ = 90 cm^3
3. Prism	A prism is a 3D shape whose cross section	\bigwedge
	is the same throughout.	
		Postando Driam Cube
		Triangle
		Prism
		Kit h
		Pentagonal Prism
4. Cross	The cross section is the shape that	
Section	continues all the way through the prism.	
		Cross Section
5. Volume of a	$V = Area of Cross Section \times Length$	
Prism	$V = A \times L$	
		Area of Cross Section
6. Volume of a	$V = \pi r^2 h$	Length
Cylinder	$V = \pi r n$	
Cymaei		5cm
		$V = \pi(4)(5)$
		$= 62.8 cm^3$
7. Volume of a \tilde{a}	$V = \frac{1}{3}\pi r^2 h$	
Cone	3 ** **	5cm
		<u> </u>
		$V = \frac{1}{3}\pi(4)(5)$
		$= 20.9 cm^3$

Tibshelf Community School

8. Volume of a	$V_{a}h_{a}m_{a} = \frac{1}{Bh}$	∧
Pyramid	$Volume = \frac{1}{3}Bh$	
	where $B = area$ of the base	7em
		6cm 6cm
		1
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^3$
9. Volume of a	<u> </u>	Find the volume of a sphere with
Sphere	$V = \frac{4}{3}\pi r^3$	diameter 10cm.
	Look out for hemispheres – just halve the	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
	volume of a sphere.	$v = \frac{1}{3}n(3) = \frac{1}{3}cm$
10. Frustums	A frustum is a solid (usually a cone or	$\wedge \uparrow \wedge \uparrow$
	pyramid) with the top removed .	12cm
	First day and have a fide and all allows down	24 cm 5 cm $+$
	Find the volume of the whole shape, then	
	take away the volume of the small	
	cone/pyramid removed at the top.	
		Volume = ?
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$
		$= 700\pi cm^{3}$

Example Topic/Skill **Definition/Tips** 1. Net A pattern that you can **cut and fold** to 1 make a model of a 3D shape. 2 3 4 5 3 6 2. Properties of **Faces = flat surfaces** A cube has 6 faces, 12 edges and 8 Solids Edges = sides/lengths vertices. Vertices = corners 3. Plans and This takes 3D drawings and produces 2D Original 3D Drawing Elevations drawings. Plan View: from above Side Elevation: from the side Front Elevation: from the front 2D Drawings Side Elevation Plan Front Elevation 4. Isometric A method for visually **representing 3D** ÷ Drawing objects in 2D.

Topic: 2D Representations of 3D Shapes

Topic: Sequences

ş	\mathcal{D}	6.1	15
		1.1	~
	Ņ	g	(
Ś	2	×	1
		N.	یگ گ

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	2, 3, 6, 11 is a inical sequence
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
3. Term-to- term rule	A rule which allows you to find the next term in a sequence if you know the previous term .	First term is 2. Term-to-term rule is 'add 3' Sequence is: 2, 5, 8, 11
4. nth term	 A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence. 	nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$
5. Finding the nth term of a linear sequence	 Find the difference. Multiply that by n. Substitute n = 1 to find out what number you need to add or subtract to get the first number in the sequence. 	Find the nth term of: 3, 7, 11, 15 1. Difference is +4 2. Start with $4n$ 3. $4 \times 1 = 4$, so we need to subtract 1 to get 3. nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34 An example of a Fibonacci-type sequence is: 4, 7, 11, 18, 29
7. Geometric Sequence	A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio , r .	An example of a geometric sequence is: 2, 10, 50, 250 The common ratio is 5 Another example of a geometric sequence is: 81, -27, 9, -3, 1 The common ratio is $-\frac{1}{3}$
8. Quadratic Sequence	 A sequence of numbers where the second difference is constant. A quadratic sequence will have a n² term. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9. nth term of a	ar^{n-1}	The nth term of 2, 10, 50, 250 Is
geometric sequence	where a is the first term and r is the common ratio	$2 \times 5^{n-1}$

10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	
	nth term of the quadratic sequence.	Nth term of this set of numbers is
		-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
11. Triangular	The sequence which comes from a pattern	1 3 6 10
numbers	of dots that form a triangle.	
	1, 3, 6, 10, 15, 21	

Topic:	Coordinates	and Linear	Graphs
---------------	-------------	------------	--------

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y -coordinate (movement up or down)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two y values.	Find the midpoint between (2,1) and (6,9) $\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$ So, the midpoint is (4,5)
3. Linear Graph	Straight line graph. The general equation of a linear graph is $y = mx + c$ where <i>m</i> is the gradient and <i>c</i> is the y-intercept. The equation of a linear graph can contain	Example: Other examples: x = y y = 4 x = -2 y = 2x - 7 y + x = 10 2y - 4x = 12
4. Plotting Linear Graphs	an x-term , a y-term and a number . Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y=x+3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form $y = mx + c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the <i>x</i> term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the <i>y</i> term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	$3 \cdot 2 \cdot 1 \cdot 1 = 1 + 2 \cdot 3 \cdot 4 = 8$

Topic: Graphs and Graph Transformations

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3)
2. Linear	Straight line graph.	Example:
Graph	The equation of a linear graph can contain an x-term , a y-term and a number .	Other examples: x = y y = 4 x = -2 y = 2x - 7 y + x = 10 2y - 4x = 12
3. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where a, b and c are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down.	$y \land y = x^2 - 4x - 5$