Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers.	3 + 2 + 7 = 12
5. Subtraction	'add', 'plus', 'sum' To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one. 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of 20 ÷ 6 is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'. With strings of division and multiplication,	$12 \div 4 \div 2 = 1.5, not 6$
	or strings of addition and subtraction, and no brackets, work from left to right.	12 . 1 . 2 – 1.5,1101 0

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JH1 II	7
10010		2	1111	5
		3	JHT 1	6
		4	1111	5
		5	111	3
2. Bar Chart	Democrate data as visitinal blooks	Total		26
2. Bar Chart	Represents data as vertical blocks.	14		
	x - axis shows the type of data	12		
	y - axis shows the frequency for each	ار الله الله الله الله الله الله الله ال		
	type of data	Frequency		
	Each bar should be the same width	9 6 -		
		4-		
	There should be gaps between each bar Remember to label each axis.	2		
	Remember to label each axis.	0	1 2 3	4
		Nu	ımber of pets o	wned
3. Types of	Compound/Composite Bar Charts show		Iron	
Bar Chart	data stacked on top of each other.	70-	Carbon	_
		60-		
		50		
		Weight (gm) 40	-	
		20-		
		10-		
		0 1 A	B Sample	С
			ainfall	
	Comparative/Dual Bar Charts show data	50	an nan	
	side by side.	40		Key:
		30		London Bristol
		cm		
		20		
		10		
		o lan Feb	Mar Anr May	,
			o Mar Apr May Month Bar Chart	
4. Pie Chart	Used for showing how data breaks down			
	into its constituent parts.		luash ace	
	•	Tennis 40		
	When drawing a pie chart, divide 360° by	6	144°	
	the total frequency. This will tell you how	Hockey	80°	
	many degrees to use for the frequency of		Netball	
	each category.			
		If there are 40 ==	onlo in o ~	invov than
	Remember to label the category that each	If there are 40 pe	-	-
	sector in the pie chart represents.	each person will	oc worui 3	∪∪ −4 ∪=9
		of the pie chart.		

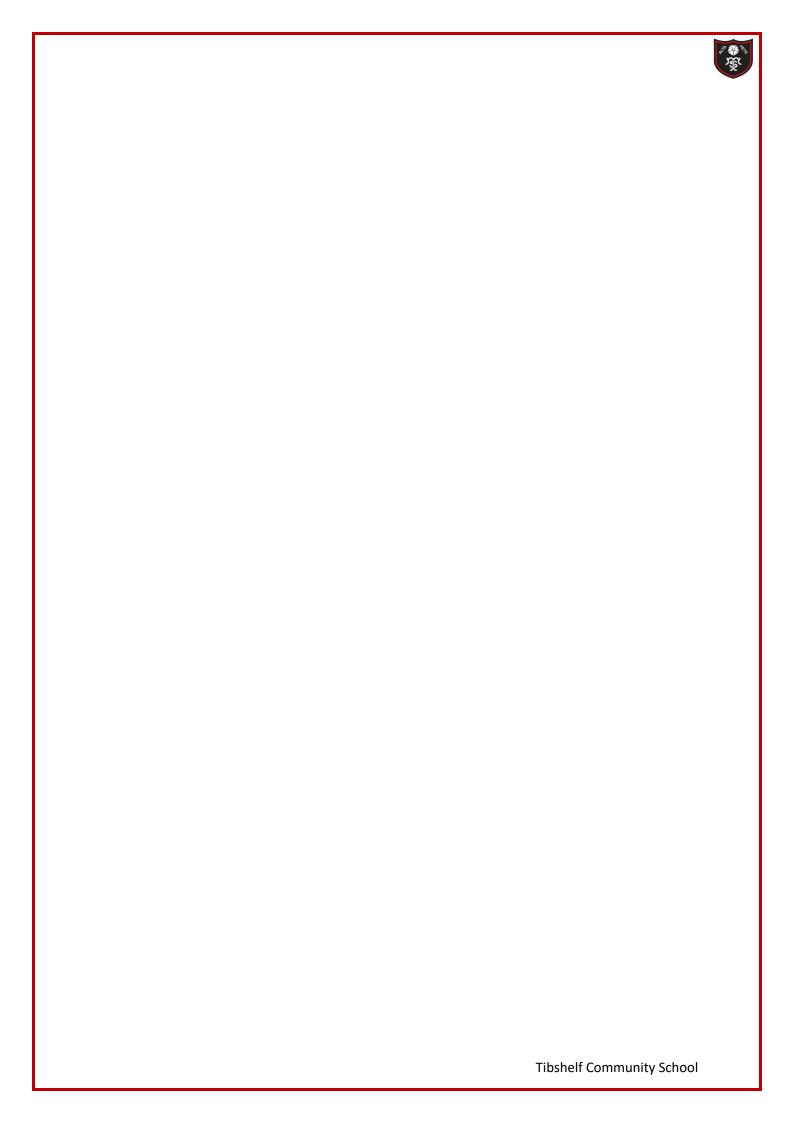
5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key .	Black Red Face Face Face Face Face Face Face Face
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9
7. Two Way	A table that organises data around two	Question: Complete the 2 way table below.
Tables		Boys 10 Right Handed Total 58
Tables	categories.	Girls
		Total 84 100
	Fill out the information step by step using	Answer: Step 1, fill out the easy parts (the totals)
	1 , 1	Boys 10 Right Handed Total Boys 10 48 58
	the information given.	Girls 40 38
		Total 16 84 100
	Make sure all the totals add up for all	Answer: Step 2, fill out the remaining parts
	columns and rows.	Left Handed Right Handed Total
	Columns and rows.	Boys 10 48 58 Girls 6 36 42
		Total 16 84 100

Topic: Summarising Data

-	
X	R. R.
SE	
×	
	iği A

Topic/Skill	Definition/Tips	Example	
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – ey	e colour, gender
Data	Quantitative Data – numerical data	etc.	
	Continuous Data – data that can take any	Continuous Data – w	reight, voltage etc.
	numerical value within a given range.	D' + D +	C 1 '1 1
	Discrete Data – data that can take only	Discrete Data – numl shoe size etc.	ber of children,
2. Grouped	specific values within a given range. Data that has been bundled in to		N 6 .1.71
Data	categories.	Foot length, l, (cm)	Number of children
Data	Categories.	10 ≤ <i>l</i> < 12	5
	Seen in grouped frequency tables,	12 ≤ <i>l</i> < 17	53
	histograms, cumulative frequency etc.		
3. Primary	Primary Data – collected yourself for a	Primary Data – data	collected by a
/Secondary	specific purpose.	student for their own	-
Data	Special property		F-sjeen
	Secondary Data – collected by someone	Secondary Data – Ce	ensus data used to
	else for another purpose.	analyse link between	
		earnings.	
4. Mean	Add up the values and divide by how many	The mean of 3, 4, 7,	6, 0, 4, 6 is
	values there are.	3+4+7+6+	0 + 4 + 6
		7	
5. Median	The middle value.	Find the median of: 4	1, 5, 2, 3, 6, 7, 6
Value			-
	Put the data in order and find the middle	Ordered: 2, 3, 4, 5 , 6	, 6, 7
	one.	N 1: 5	
	If there are two middle values , find the	Median = 5	
	number half way between them by adding them together and dividing by 2.		
6. Mode	Most frequent/common.	Find the mode: 4, 5,	2 3 6 4 7 8 4
/Modal Value	riose frequenticonfinion.	i ma me mode. 4, 3,	۷, ۵, ۵, ٦, ١, ٥, ٦
/iviodai vaiuc	Can have more than one mode (called bi-	Mode = 4	
	modal or multi-modal) or no mode (if all	1,1000 - 1	
	values appear once)		
7. Range	Highest value subtract the Smallest value	Find the range: 3, 31	, 26, 102, 37, 97.
	Range is a 'measure of spread'. The smaller	Range = $102-3 = 99$	
	the range the more <u>consistent</u> the data.	Kalige = 102-3 = 99	
	the range the more consistent the data.		

Topic: Algebra



Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols, numbers or letters,	$3x + 2 \text{ or } 5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	$2x + 3y + 4x - 5y + 3$ $= 6x - 2y + 3$ $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then p^3 =2x2x2=8, not 2x3=6
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	6x - 15 = 3(2x - 5), where 3 is the common factor.
11. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT X 3 + 4 OUTPUT

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
1. Real Life Graphs	Graphs that are supposed to model some real-life situation.	40 - 38 - 36 -
	The actual meaning of the values depends on the labels and units on each axis.	34 - 32 - 30 - 28 - 26 -
	The gradient might have a contextual meaning. The y-intercept might have a contextual	(3) 24 - 150 20 - 18 - 16 - 16 - 16 - 16 - 16 - 16 - 16
	meaning. The area under the graph might have a contextual meaning.	14 - 12 - 10 - 8 - 6 -
		0 1 2 3 4 5 6 7 8 9 10
		Days (d)
		A graph showing the cost of hiring a ladder for various numbers of days.
		The gradient shows the cost per day. It costs £3/day to hire the ladder.
		The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is £7.
2. Conversion	A line graph to convert one unit to	Conversion graph miles \iff kilometres
Graph	another.	km 20
	Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £)	16
	Find the value you know on one axis, read up/across to the conversion line and read	8
	the equivalent value from the other axis.	0 5 10 miles15
		8 km = 5 miles
3. Depth of Water in	Graphs can be used to show how the depth of water changes as different shaped	1 2 3 4 5
Containers	containers are filled with water at a constant rate.	A B C

Topic: Coordinates and Linear Graphs

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the x-coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two	Find the midpoint between $(2,1)$ and $(6,9)$ $\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$
	y values.	So, the midpoint is (4,5)
3. Linear Graph	Straight line graph. The general equation of a linear graph is	Example: Other examples:
	 y = mx + c where m is the gradient and c is the y-intercept. The equation of a linear graph can contain an x-term, a y-term and a number. 	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x +3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form $y = mx + c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$ 2 3 2 3 2 3 3
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the x term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the y term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an integer.	The first five multiples of 7 are:
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common Factor (HCF)	into two or more numbers.	the biggest number that divides into 6 and 9 exactly.
5. Prime	A number with exactly two factors .	The first ten prime numbers are:
Number	•	-
	A number that can only be divided by itself and one.	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	The number 1 is not prime , as it only has	
	one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		2,3

Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers. 'add', 'plus', 'sum'	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one. 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of 20 ÷ 6 is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever.	$\frac{1}{3} = 0.333 \dots = 0.\dot{3}$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the	$\frac{1}{7} = 0.142857142857 \dots = 0.142857$

repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$

Topic: Measures

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	1 centimetre = 10 millimetres
	- the kilogram for mass	
	- the second for time	$1 \ kilogram = 1000 \ grams$
	Length: mm, cm, m, km	
	Mass: mg, g, kg	
	Volume: ml, cl, l	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
	based on human quantities	$1 \ gallon = 8 \ pints$
	Length: inch, foot, yard, miles	
	Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	5 miles ≈ 8 kilometres
Imperial Units	between metric and imperial units.	1 gallon ≈ 4.5 litres
		$2.2 pounds \approx 1 kilogram$
		1 inch = 2.5 centimetres

Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. BAC	$A \leftarrow \theta$ C
3. Angles at a Point	Angles around a point add up to 360°.	$\begin{vmatrix} d & a \\ c & b \end{vmatrix}$ $a+b+c+d=360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x = y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x/y}{y/x}$
6. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45°
7. Types of Triangles	Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal.	Right Angled Isosceles 60° 60° Equilateral Scalene

8. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	75°
		65° 93°

Topic/Skill	Definition/Tips	Example
1. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
2. Regular	A shape is regular if all the sides and all the angles are equal .	
3. Names of	3-sided = Triangle 4-sided = Quadrilateral	$\Lambda \sim 17$
Polygons	5-sided = Quadrilateral	Triangle Quadrilateral Pentagon Hexagon
	6-sided = Hexagon	Triangle Quadrilateral Pentagon Hexagon
	7-sided = Heptagon /Septagon	
	8-sided = Octagon	
	9-sided = Nonagon	Heptagon Octagon Nonagon Decagon
	10-sided = Decagon	

Topic: Properties of Polygons

_		
Y	P. P.	
35	\mathfrak{A}	Į
×		
	× 55 ×	ǽi ₩,ÿ

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	• Rotational symmetry of order four	
2. Rectangle	• Two pairs of equal sides	
8	• Four right angles	
	• Opposite sides parallel	
	• Diagonals bisect each other, not at right	
	angles	
	• Two lines of symmetry	//
	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	
	• Diagonally opposite angles are equal	× ×
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Two lines of symmetry	~
	• Rotational symmetry of order two	
4.	• Two pairs of equal sides	//
Parallelogram	 Diagonally opposite angles are equal 	
	 Opposite sides parallel 	<i>f</i>
	• Diagonals bisect each other, not at right	
	angles	<i>───//</i> → <i>──</i>
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	*
	length	
	• One pair of diagonally opposite angles	
	are equal (where different length sides	\ \ \ \ \ \ \
	meet)	
	• Diagonals intersect at right angles, but	*
	do not bisect	
	• One line of symmetry	
6. Trapezium	No rotational symmetry One point of parallel sides	
o. Hapezhilli	• One pair of parallel sides	
	No lines of symmetry	
	No rotational symmetry	
	Special Cases Isospelas Transciums have	<u> </u>
	Special Case: Isosceles Trapeziums have	
	one line of symmetry.	

Topic: Perimeter and Area

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape. Units include: mm, cm, m etc.	8 cm $P = 8 + 5 + 8 + 5 = 26cm$
2. Area	The amount of space inside a shape. Units include: mm^2 , cm^2 , m^2	
3. Area of a Rectangle	Length x Width	$A = 36cm^2$
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	$_{7 ext{cm}}$ $_{7 ext{cm}}$ $_{7 ext{cm}}$ $_{7 ext{cm}}$
5. Area of a Triangle	Base x Height ÷ 2	$ \begin{array}{c c} 9 & 4 \\ \hline & 12 \end{array} $ $A = 24cm^2$
6. Compound Shape	A shape made up of a combination of other known shapes put together.	- + +

Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another.	$\frac{2}{7}$ is a 'proper' fraction.
	Fractions are written as two numbers separated by a horizontal line.	$\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}$, 3 is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}$, 5 is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ etc. are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number .	The reciprocal of 5 is $\frac{1}{5}$
	The reciprocal of x is $\frac{1}{x}$	The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because
	When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'.	$\frac{2}{3} \times \frac{3}{2} = 1$
6. Mixed Number	A number formed of both an integer part and a fraction part .	$3\frac{2}{5}$ is an example of a mixed number.
7. Simplifying Fractions	Divide the numerator and denominator by the highest common factor.	$\frac{20}{45} = \frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value .	$\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} etc.$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common	Put in to ascending order: $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
	denominator. Ascending means smallest to biggest.	Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$
	Descending means biggest to smallest.	Correct order: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$
10. Fraction of an Amount	Divide by the bottom , times by the top	Find $\frac{2}{5}$ of £60 $60 \div 5 = 12$ $12 \times 2 = 24$
11. Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator. Then just add or subtract the numerators	$12 \times 2 = 24$ $\frac{2}{3} + \frac{4}{5}$ Multiples of 3: 3, 6, 9, 12, 15 Multiples of 5: 5, 10, 15 LCM of 3 and 5 = 15

	and keep the denominator the same .	$\frac{\frac{2}{3}}{\frac{4}{5}} = \frac{10}{\frac{15}{15}}$ $\frac{4}{5} = \frac{12}{15}$
12.	Multiply the numerators together and	$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$ $3 2 6 1$
Multiplying Fractions	multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{3}{72} = \frac{1}{12}$
13. Dividing Fractions	'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$
	Multiply by the reciprocal of the second fraction.	

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10%, divide by 10	$10\% \text{ of } £36 = 36 \div 10 = £3.60$
3. Finding 1%	To find 1%, divide by 100	$1\% \text{ of } £8 = 8 \div 100 = £0.08$
4. Percentage Change	$rac{Difference}{Original} imes 100\%$	A games console is bought for £200 and sold for £250. % change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using equivalent fractions.	$\frac{3}{25} = \frac{12}{100} = 12\%$
	When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100.	$\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	Q R 3 3 4 P R' Q' 4 P P'
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point .	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	Х.
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x = ?$ is a vertical line. Line $y = ?$ is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'
6. Describing Transformations	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement

	If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	·
--	---	---

Topic: Congruence and Similarity

Topic/Skill	Definition/Tips	Example
1. Congruent	Shapes are congruent if they are identical -	
Shapes	same shape and same size.	
	Shapes can be rotated or reflected but still	
	be congruent.	
2. Similar	Shapes are similar if they are the same	
Shapes	shape but different sizes.	
	The proportion of the matching sides must	
	be the same, meaning the ratios of	
	corresponding sides are all equal.	
3. Scale Factor	The ratio of corresponding sides of two	16
	similar shapes.	
		10 15
	To find a scale factor, divide a length on	
	one shape by the corresponding length on	
	a similar shape.	Scale Factor = $15 \div 10 = 1.5$