Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers. 'add', 'plus', 'sum'	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one . 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of $20 \div 6$ is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction'.	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$
10. Recurring Decimal	A decimal number that has digits that repeat forever.	$\frac{1}{3} = 0.333 \dots = 0.\dot{3}$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or	$\frac{1}{7} = 0.142857142857 \dots = 0.\dot{1}4285\dot{7}$

dots over the first and last digit of the repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$

1. T. L.

Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:
	integer.	
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)		and 9 exactly.
5. Prime	A number with exactly two factors.	The first ten prime numbers are:
Number		
	A number that can only be divided by itself and one.	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	The number 1 is not prime, as it only has one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		
		2,3
7. Product of	Finding out which prime numbers	$36 = 2 \times 2 \times 3 \times 3$
Prime Factors	multiply together to make the original	
	number.	(2) 18 or $2^2 \times 3^2$
	Use a prime factor tree.	2 9
	Also known as 'prime factorisation'.	3 3

		Topic: Accuracy
Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a number.	In 726, the value of the 2 is 20, as it is in the 'tens' column.
2. Place Value Columns	The names of the columns that determine the value of each digit .	Millions Millions Fen Thousands Fen Thousands Fen Thousands Thousands Fundreds Fundreds Comes Ones Ones Comes Point Fenths Thousandths Hundred Thousandths Millionths
	The 'ones' column is also known as the 'units' column.	
3. Rounding	To make a number simpler but keep its value close to what it was.	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80.
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.
4. Decimal Place	The position of a digit to the right of a decimal point .	In the number 0.372, the 7 is in the second decimal place.
		0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down.
		Careful with money - don't write £27.4, instead write £27.40
5. Significant Figure	The significant figures of a number are the digits which carry meaning (ie. are significant) to the size of the number.	In the number 0.00821, the first significant figure is the 8.
	The first significant figure of a number cannot be zero .	In the number 2.740, the 0 is not a significant figure.
	In a number with a decimal, trailing zeros are not significant.	0.00821 rounded to 2 significant figures is 0.0082.
		19357 rounded to 3 significant figures is 19400. We need to include the two zeros at the end to keep the digits in the same place value columns.
6. Truncation	A method of approximating a decimal number by dropping all decimal places past a certain point without rounding .	3.14159265 can be truncated to 3.1415 (note that if it had been rounded, it would become 3.1416)
7. Estimate	To find something close to the correct	An estimate for the height of a man is
	answer.	1.8 metres.
8. Approximation	When using approximations to estimate the solution to a calculation, round each	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$
	number in the calculation to 1 significant figure.	'Note that dividing by 0.5 is the same as multiplying by 2'
	\approx means 'approximately equal to'	

Topic: Standard Form

5 👬

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \text{ x } 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \ge 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Representing Data

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHH 11	7
		2	1111	5
		3	JHH I	6
		4		5
		5		3
		Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.	14 12 10 8 6 4 2 0 0 0	1 2 3 umber of pets of	4 wwned
3. Types of Bar Chart	Compound/Composite Bar Charts show data stacked on top of each other.	Weight (gm) 40 0 0 0 0 0 0 0 0 0 0 0 0 0		
	Comparative/Dual Bar Charts show data side by side.	50 40 30 20 10 Jan Fet	ainfall Mar Apr May Month Bar Chart	Key: London Bristol
4. Pie Chart	Used for showing how data breaks down			
	into its constituent parts.		Juash 36°	
	When drawing a pie chart, divide 360° by the total frequency . This will tell you how many degrees to use for the frequency of each category.	Tennis 40 Hockey	144°	
	Remember to label the category that each sector in the pie chart represents.	If there are 40 pe each person will of the pie chart.		

5. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data ,	14 - 12 - 10 - 8 - 6 -		\bigwedge	
	which is a series of data points spaced over uniform time intervals in time order .	4 · 2 · 0 ·	1 2 3	4 5 6 7	8 9
6. Two Way	A table that organises data around two		Question: Comple Left Handed	te the 2 way table b Right Handed	elow. Total
Tables	categories.	Boys	10	Right Handed	58
100105	categories.	Girls			
		Total		84	100
	Fill out the information step by step using	An		ut the easy parts (th	<u> </u>
			Left Handed 10	Right Handed 48	Total 58
	the information given.	Boys Girls	10	48	38 42
		Total	16	84	100
	Make sure all the totals add up for all			l out the remaining	
	Make sure all the totals add up for all		Left Handed	Right Handed	Total
	columns and rows.	Boys	10	48	58
		Girls	б	36	42
		Total	16	84	100

୍ୟ 🏶 ଅନୁସ

Topic/Skill	Definition/Tips	Example		
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender		
Data	Quantitative Data – numerical data	etc.		
	Continuous Data – data that can take any numerical value within a given range.	Continuous Data – weight, voltage etc.		
	Discrete Data – data that can take only specific values within a given range.	Discrete Data – number of children, shoe size etc.		
2. Grouped	Data that has been bundled in to			
Data	categories.			
Dulu		$10 \leqslant l < 12 \qquad \qquad 5$		
	Seen in grouped frequency tables,	$12 \leqslant l < 17 \qquad 53$		
	histograms, cumulative frequency etc.			
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a		
/Secondary Data	specific purpose.	student for their own research project.		
	Secondary Data – collected by someone else for another purpose.	Secondary Data – Census data used to analyse link between education and earnings.		
4. Mean	Add up the values and divide by how many values there are.	The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$		
5. Mean from a Table	 Multiply Frequency by values or midpoints Add up these values 	Height in cm Frequency Midpoint $F \times M$ $0 < h \le 10$ 8 5 $8 \times 5 = 40$ $10 < h \le 30$ 10 20 $10 \times 20 = 200$ $30 < h \le 40$ 6 35 $6 \times 35 = 210$ Total 24 Ignore! 450 Estimated Mean Mean Mean Mean Mean		
	4. Divide this total by the Total Frequency	height: $450 \div 24 =$ 18.75cm		
	If grouped data is used, the answer will be an estimate .			
6. Median Value	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6		
	Put the data in order and find the middle one.	Ordered: 2, 3, 4, 5, 6, 6, 7		
	If there are two middle values , find the number half way between them by adding them together and dividing by 2 .	Median = 5		
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the position of	If the total frequency is 15, the median		
from a Table	the median.	will be the $\left(\frac{15+1}{2}\right) = 8th$ position		
	<i>n</i> is the total frequency.			
8. Mode /Modal Value	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4		
	Can have more than one mode (called bi- modal or multi-modal) or no mode (if all values appear once)	Mode = 4		
9. Range	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.		
		Range = 102-3 = 99		

	Range is a 'measure of spread'. The smaller the range the more <u>consistent</u> the data.	
10. Outlier	A value that ' lies outside ' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.	12 10 8 6 4 2 0 20 40 60 80 100

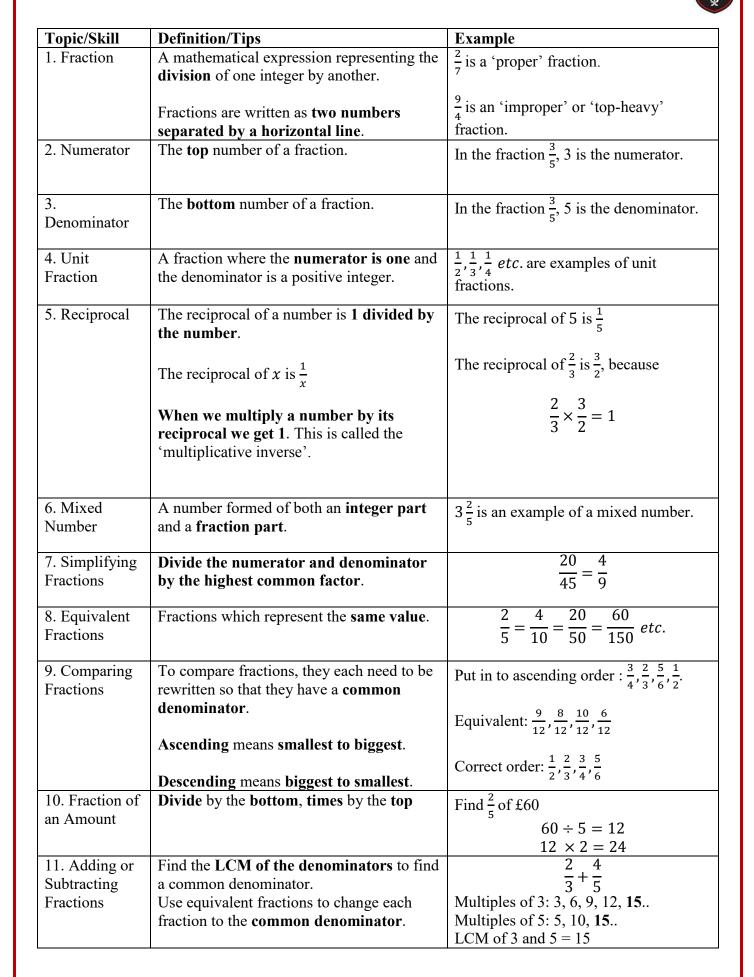
Subject: Maths

Topic/Skill	Definition/Tips	Example
1. Correlation	Correlation between two sets of data means	There is correlation between
	they are connected in some way.	temperature and the number of ice
		creams sold.
2. Causality	When one variable influences another	The more hours you work at a
2. Cuusuity	variable.	particular job (paid hourly), the higher
	variable.	your income <u>from that job</u> will be.
3. Positive	As one value increases the other value	your meome <u>mom that job</u> will be.
Correlation	increases.	
Correlation	nicreases.	i i i i i i i i i i i i i i i i i i i
		a t t t
		Positive Correlation
4. Negative	As one value increases the other value	+
Correlation	decreases.	- * x x * * * * * * * * * * * * * * * *
Correlation	uecreases.	
		Negative Correlation
5. No	There is no linear valationship hotorea	*
	There is no linear relationship between	>- x x x x x
Correlation	the two.	× × × × ×
6. Strong	When two sets of data are closely linked .	No Correlation
Correlation	when two sets of data are closely linked.	
Conclation		
		Strong
		Positive
		Correlation
7. Weak	When two sets of data have correlation, but	
Correlation	are not closely linked.	
		•••
		Weak Positive
		Correlation
8. Scatter	A graph in which values of two variables	Sealingtel (or quality characteristic XXX
Graph	are plotted along two axes to compare	
1	them and see if there is any connection	
	between them.	
		Toomaco'
9. Line of Best	A straight line that best represents the	
Fit	data on a scatter graph.	
		x x
10 0 1		
10. Outlier	A value that 'lies outside' most of the other	10 Outlier
	values in a set of data.	8
	An outlier is much smaller or much	6
	larger than the other values in a set of data.	4
		2
		0 20 40 50 80 100

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
1. Real Life Graphs	Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.	Image: Construction of the second system
2. Conversion Graph	 A line graph to convert one unit to another. Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis. 	Conversion graph miles \iff kilometres km 20 16 12 8 4 0 5 10 miles15
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	$8 \ km = 5 \ miles$

Topic: Algebra



		Algebra
Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 3x + 4 - x ² + 2x - 1 = 5x - x ² + 3
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x^2x^2=8$, not 2x3=6
8. $p + p + p$	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by ' taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
2. Inverse	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Opposite	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction.
		The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	Be careful of $5x^2$. You need to square first, then multiply by 5.	2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Fractions

	Then just add or subtract the numerators and keep the denominator the same .	$\frac{\frac{2}{3} = \frac{10}{15}}{\frac{4}{5} = \frac{12}{15}}$ $\frac{\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing Fractions	 'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second fraction. 	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding	To find 10%, divide by 10	$10\% \text{ of } \pounds 36 = 36 \div 10 = \pounds 3.60$
10%		
3. Finding 1%	To find 1%, divide by 100	$1\% \text{ of } \pounds 8 = 8 \div 100 = \pounds 0.08$
4. Percentage	Difference	A games console is bought for £200
Change	$\frac{Difference}{Original} \times 100\%$	and sold for £250.
		% change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to	Divide the numerator by the	3 2 2 2 2 7 7
Decimals	denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to	Write as a fraction over 10, 100 or 1000	$0.36 = \frac{36}{100} = \frac{9}{25}$
Fractions	and simplify.	$0.36 = \frac{100}{100} = \frac{100}{25}$
7. Percentages to Decimals	Divide by 100	8% = 8 ÷ 100 = 0.08
8. Decimals to	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
Percentages		
9. Fractions to	Percentage is just a fraction out of 100.	3 12 100/
Percentages	Make the denominator 100 using	$\frac{3}{25} = \frac{12}{100} = 12\%$
	equivalent fractions.	
	When the denominator doesn't go in to	$\frac{9}{17} \times 100 = 52.9\%$
	100, use a calculator and multiply the	$\frac{1}{17} \times 100 = 52.9\%$
	fraction by 100.	
10.	Percentage is just a fraction out of 100.	$14\% = \frac{14}{100} = \frac{7}{50}$
Percentages to	Write the percentage over 100 and	$14\% = \frac{1}{100} = \frac{1}{50}$
Fractions	simplify.	

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of	Acute angles are less than 90°.	
Angles	Right angles are exactly 90°.	
	Obtuse angles are greater than 90° but less	Acute Right Obtuse Reflex
	than 180°.	
	Reflex angles are greater than 180° but less	
2 Anala	than 360°.	B
2. Angle Notation	Can use one lower-case letters, eg. θ or x	
Notation	Can use three upper-case letters, eg. <i>BAC</i>	
	Cui use un ce upper cuse fotters, eg. Brie	$A \leq \theta$
3. Angles at a	Angles around a point add up to 360°.	
Point		c a
		b
		$a+b+c+d=360^{\circ}$
1 1 1 2 2 2 2 2		a+b+c+a=500
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	/
		<u>x / y</u>
		$x + y = 180^{\circ}$
5. Opposite	Vertically opposite angles are equal.	
Angles		$\frac{x/y}{y}$
		y/x
6. Alternate	Alternate angles are equal.	
Angles	They look like Z angles, but never say this	<i>y</i> /*
	in the exam.	
		$x y \rightarrow$
7.	Corresponding angles are equal.	y/
Corresponding	They look like F angles, but never say this	
Angles	in the exam.	
		v
		/
8. Co-Interior	Co-Interior angles add up to 180° .	${v}$
Angles	They look like C angles, but never say this in the exam.	1
		x v
9. Angles in a	Angles in a triangle add up to 180°.	A
Triangle		800
		B 45°
		55°
	I	<u> </u>

Tibshelf Community School

10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	126° 75° 126° 93°
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
15. Sum of	$(n-2) \times 180$	Sum of Interior Angles in a Decagon =
Interior Angles	where n is the number of sides.	$(10-2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula: 180 – Size of Exterior Angle	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$
17. Size of Exterior Angle in a Regular Polygon	360 nYou can also use the formula: 180 - Size of Interior Angle	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8} = 45^{\circ}$

্য 🏶 े সন্ধ্র

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	• Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	 Rotational symmetry of order four 	
2. Rectangle	• Two pairs of equal sides	
2. 1000001.810	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	
	angles	
	• Two lines of symmetry	
	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	~
	Diagonally opposite angles are equal	\rightarrow
	• Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Two lines of symmetry	\sim
	• Rotational symmetry of order two	
4.	• Two pairs of equal sides	
Parallelogram	• Diagonally opposite angles are equal	
8	Opposite sides parallel	
	• Diagonals bisect each other, not at right	1 1
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	
	length	\times \times
	• One pair of diagonally opposite angles	
	are equal (where different length sides	$\times \neq$
	meet)	
	• Diagonals intersect at right angles, but	\checkmark
	do not bisect	
	• One line of symmetry	
	No rotational symmetry	
6. Trapezium	• One pair of parallel sides	
-	• No lines of symmetry	
	 No rotational symmetry 	

Special Case: Isosceles Trapeziums have one line of symmetry.

Tibshelf Community School