Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers. 'add', 'plus', 'sum'	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one . 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of $20 \div 6$ is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction' .	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$

Topic: Ratio

57 F

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
	XX7 ¹ / ₁	
2 Duen oution	Written using the ':' symbol.	In a class with 12 hours and 0 sinks the
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the 13
	the size of the whole.	proportion of boys is $\frac{13}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5: 10 = 1: 2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5:7 = 1:\frac{7}{5}$ in the form $1:n$
form $1: n$ or	numbers to make one part equal 1 .	$5:7 = \frac{5}{7}:1$ in the form n : 1
n: 1		$3 \cdot 7 = \frac{1}{7} \cdot 1$ in the form if $\cdot 1$
5. Sharing in a	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.
Ratio	2. Divide the amount to be shared by this	
	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	$3 \ge 10 = 30, 2 \ge 10 = 20, 1 \ge 10 = 10$ £30 : £20 : £10
	Use only if you know the total .	130:120:110
6. Proportional	Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	
iteasoning	situation.	30 minutes 60 pages
		? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	X 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$

Example **Topic/Skill Definition/Tips** A pattern that you can **cut and fold** to 1. Net 1 make a model of a 3D shape. 2 3 4 5 3 6 2. Properties of **Faces = flat surfaces** A cube has 6 faces, 12 edges and 8 Solids **Edges = sides/lengths** vertices. Vertices = corners 3. Plans and This takes 3D drawings and produces 2D Original 3D Drawing Elevations drawings. Plan View: from above Side Elevation: from the side Front Elevation: from the front 2D Drawings Side Elevation Plan Front Elevation 4. Isometric A method for visually **representing 3D** ÷ Drawing objects in 2D.

Topic: 2D Representations of 3D Shapes

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a shape. Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	8 cm 5 cm P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape. Units include: mm^2 , cm^2 , m^2	
3. Area of a Rectangle	Length x Width	4 cm $A = 36cm^2$
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	4cm 3cm $A = 21cm^2$
5. Area of a Triangle	Base x Height ÷ 2	9 4 5 $A = 24cm^2$
8. Compound Shape	A shape made up of a combination of other known shapes put together.	

Topic: Volume

	-	-	
ź	ΥÇ		ķ
	r	èr.	
L	-	S٢	
	-	~	/

		1
Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a	V = Length imes Width imes Height	M
Cube/Cuboid	$V = L \times W \times H$	6cm
	You can also use the Volume of a Prism formula for a cube/cuboid.	3 cm
		volume = $6 \times 5 \times 3$ = 90 cm^3
3. Prism	A prism is a 3D shape whose cross section is the same throughout.	Triangle Prism Pentagonal Prism Hexagonal Prism
4. Cross Section	The cross section is the shape that continues all the way through the prism .	Cross Section
5. Volume of a Prism	V = Area of Cross Section imes Length V = A imes L	Area of Cross Section Length

Topic: Representing Data

1² 12

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHH 11	7
		2	JH1	5
		3	1111 I	6
		4	1111	5
		5	111	3
		Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.	14 12 10 8 6 4 2 0 0 0	1 2 3 imber of pets c	4 bwned
3. Types of Bar Chart	Compound/Composite Bar Charts show data stacked on top of each other.	Weght (gm) 40 20 10 A	Auminum	c
	Comparative/Dual Bar Charts show data side by side.	50 40 30 20 10 Jan Feb	ainfall Mar Apr May Month Bar Chart	Key: London Bristol
4. Pie Chart	Used for showing how data breaks down			
	 into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category. 	Tennis 40 Hockey	80° Netball	
	Remember to label the category that each sector in the pie chart represents.	If there are 40 pe each person will of the pie chart.	-	•

5. Pictogram	Uses pictures or symbols to show the value of the data.	Black 🛱 🛱 🖣
	A pictogram must have a key .	Green $\not\models$ $ = 4 cars$ Others $\not\models$ $\not\models$ $\not\models$ $\not\models$
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values.	14 12 10 8
	This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	
7. Two Way Tables	A table that organises data around two categories.	Question: Complete the 2 way table below. Left Handed Right Handed Total Boys 10 58 Girls 58 Total 84 100
	Fill out the information step by step using the information given.	Iotal 84 100 Answer: Step 1, fill out the easy parts (the totals) Image: Constraint of the total of to
	Make sure all the totals add up for all columns and rows.	Answer: Step 2, fill out the remaining parts Left Handed Right Handed Total Boys 10 48 58 Girls 6 36 42 Total 16 84 100

Topic: Algebra

		Algebra
Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
4. Formula	An identity uses the symbol: ≡ Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x^2x^2=8$, not 2x3=6
8. <i>p</i> + <i>p</i> + <i>p</i>	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by ' taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Basic Number and Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive, negative or zero.	-3, 0, 92
2. Decimal	A number with a decimal point in it. Can be positive or negative.	3.7, 0.94, -24.07
3. Negative Number	A number that is less than zero . Can be decimals.	-8, -2.5
4. Addition	To find the total , or sum , of two or more numbers. 'add', 'plus', 'sum'	3 + 2 + 7 = 12
5. Subtraction	To find the difference between two numbers. To find out how many are left when some are taken away. 'minus', 'take away', 'subtract'	10 - 3 = 7
6. Multiplication	Can be thought of as repeated addition . 'multiply', 'times', 'product'	$3 \times 6 = 6 + 6 + 6 = 18$
7. Division	Splitting into equal parts or groups. The process of calculating the number of times one number is contained within another one . 'divide', 'share'	$20 \div 4 = 5$ $\frac{20}{4} = 5$
8. Remainder	The amount ' left over ' after dividing one integer by another.	The remainder of $20 \div 6$ is 2, because 6 divides into 20 exactly 3 times, with 2 left over.
9. BIDMAS	An acronym for the order you should do calculations in.	$6 + 3 \times 5 = 21, not 45$
	BIDMAS stands for 'Brackets, Indices, Division, Multiplication, Addition and Subtraction' .	$5^2 = 25$, where the 2 is the index/power.
	Indices are also known as 'powers' or 'orders'.	
	With strings of division and multiplication, or strings of addition and subtraction, and no brackets, work from left to right.	$12 \div 4 \div 2 = 1.5, not 6$

		Topic: Accuracy		
Topic/Skill	Definition/Tips	Example		
1. Place Value	The value of where a digit is within a number.	In 726, the value of the 2 is 20, as it is in the 'tens' column.		
2. Place Value Columns	The names of the columns that determine the value of each digit . The 'ones' column is also known as the 'units' column.	Millions Millions Hundred Thousands Hundred Thousands Ten Thousands Hundreds Hundreds Tens Cones Cones Cones Tens Tens Tens Ten Thousandths Ten-Thousandths Millionths		
3. Rounding	To make a number simpler but keep its value close to what it was. If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	74 rounded to the nearest ten is 70, because 74 is closer to 70 than 80. 152,879 rounded to the nearest thousand is 153,000.		
4. Decimal Place	The position of a digit to the right of a decimal point .	In the number 0.372, the 7 is in the second decimal place. 0.372 rounded to two decimal places is 0.37, because the 2 tells us to round down. Careful with money - don't write £27.4, instead write £27.40		

Topic: Angles

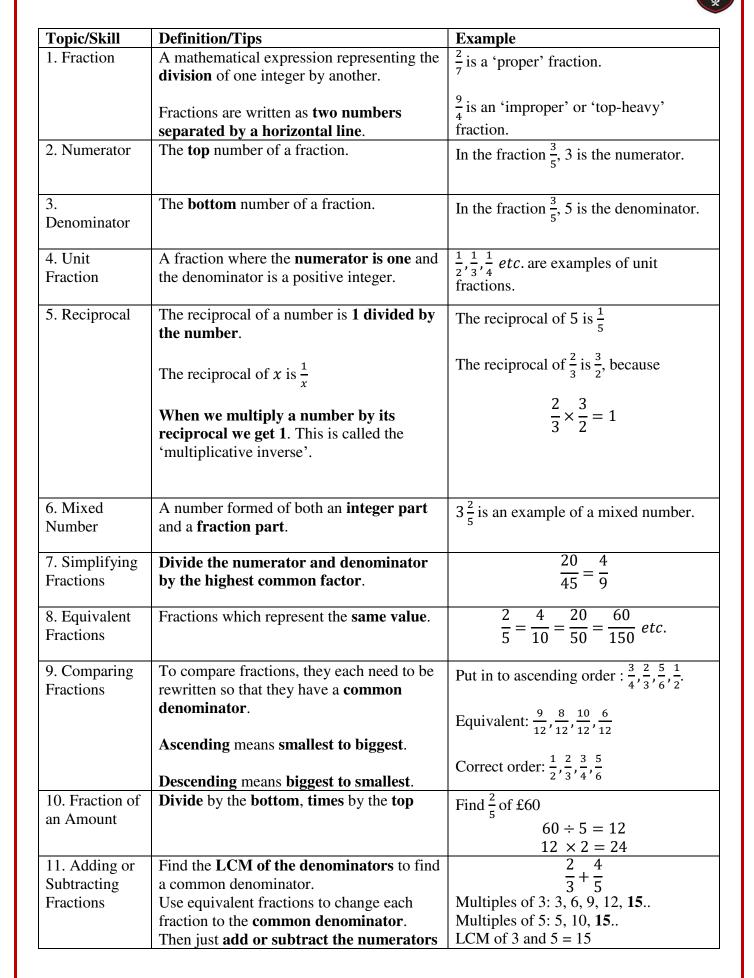
Topic/Skill	Definition/Tips	Example
1. Types of Angles	 Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°. 	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. <i>BAC</i>	
3. Angles at a Point	Angles around a point add up to 360°.	$a + b + c + d = 360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x/y}{y/x}$
6. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45 ° 55° C
7. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles

		-	
8. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.		
Quadrilateral			750
			126°
			65° 93°

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2. Perpendicular	Perpendicular lines are at right angles. There is a 90° angle between them.	
3. Vertex	A corner or a point where two lines meet.	vertex A B C
4. Constructing Triangles (Side, Side, Side)	 Draw the base of the triangle using a ruler. Open a pair of compasses to the width of one side of the triangle. Place the point on one end of the line and draw an arc. Repeat for the other side of the triangle at the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect. 	
5. Constructing Triangles (Side, Angle, Side)	 Draw the base of the triangle using a ruler. Measure the angle required using a protractor and mark this angle. Remove the protractor and draw a line of the exact length required in line with the angle mark drawn. Connect the end of this line to the other end of the base of the triangle. 	B 50° 7cm
6. Constructing Triangles (Angle, Side, Angle)	 Draw the base of the triangle using a ruler. Measure one of the angles required using a protractor and mark this angle. Draw a straight line through this point from the same point on the base of the triangle. Repeat this for the other angle on the other end of the base of the triangle. 	y <u>42°</u> <u>51°</u> Z 8.3cm

Topic: Factors and Multiples


Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:
	integer.	
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)		and 9 exactly.
5. Prime	A number with exactly two factors .	The first ten prime numbers are:
Number		
	A number that can only be divided by itself and one.	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	The number 1 is not prime, as it only has	
	one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		
		2,3
7. Product of	Finding out which prime numbers	36 26 2.2.2.2.2
Prime Factors	multiply together to make the original	$36 = 2 \times 2 \times 3 \times 3$
	number.	(2) 18 or $2^2 \times 3^2$
	Use a prime factor tree.	2 9
	Also known as 'prime factorisation'.	3 3

Topic: Sequences

	-	ł
	18 X 81	
ľ	Y	•
	۶ş۲.	J
	-	

Topic/Skill	Definition/Tips	Example
1. Linear Sequence	A number pattern with a common difference .	2, 5, 8, 11 is a linear sequence
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
3. Term-to- term rule	A rule which allows you to find the next term in a sequence if you know the previous term .	First term is 2. Term-to-term rule is 'add 3' Sequence is: 2, 5, 8, 11
4. nth term	 A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence. 	nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$
5. Finding the nth term of a linear sequence	 Find the difference. Multiply that by n. Substitute n = 1 to find out what number you need to add or subtract to get the first number in the sequence. 	Find the nth term of: 3, 7, 11, 15 1. Difference is +4 2. Start with $4n$ 3. $4 \times 1 = 4$, so we need to subtract 1 to get 3. nth term = $4n - 1$
6. Fibonacci type sequences	A sequence where the next number is found by adding up the previous two terms	The Fibonacci sequence is: 1,1,2,3,5,8,13,21,34 An example of a Fibonacci-type sequence is: 4,7,11,18,29
7. Triangular numbers	The sequence which comes from a pattern of dots that form a triangle. 1, 3, 6, 10, 15, 21	

Topic: Fractions

		(%)
and keep the c	lenominator the same.	$\frac{2}{3} = \frac{10}{15}$
		$\overline{5} = \overline{15}$ $\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
		$\frac{15}{15} + \frac{15}{15} - \frac{15}{15} - \frac{1}{15}$

1³⁸

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10% , divide by 10	$10\% \text{ of } \pounds 36 = 36 \div 10 = \pounds 3.60$
3. Finding 1%	To find 1% , divide by 100	$1\% \text{ of } \pounds 8 = 8 \div 100 = \pounds 0.08$
4. Fractions to	Percentage is just a fraction out of 100.	$\frac{3}{25} = \frac{12}{100} = 12\%$
Percentages	Make the denominator 100 using	$\frac{1}{25} = \frac{1}{100} = 12\%$
	equivalent fractions.	
	When the denominator doesn't go in to	$\frac{9}{17} \times 100 = 52.9\%$
	100, use a calculator and multiply the	$\frac{17}{17} \times 100 = 32.9\%$
	fraction by 100.	
5. Percentages	Percentage is just a fraction out of 100.	$14\% = \frac{14}{100} = \frac{7}{50}$
to Fractions	Write the percentage over 100 and	$14\% = \frac{1}{100} = \frac{1}{50}$
	simplify.	

Topic: Basic Probability

ν³⁷ ₩ γα

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something	
	happening.	Impossible Unlikely Even Chance Likely Certain
	Is expressed as a number between 0	
	(impossible) and 1 (certain).	
		1-in-6 Chance 4-in-5 Chance
	Can be expressed as a fraction, decimal,	
	percentage or in words (likely, unlikely, even chance etc.)	
2. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
3. Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
Probability	Total Number of Possible Outcomes	sided die = $\frac{1}{6}$.
4. Relative	Number of Successful Trials	A coin is flipped 50 times and lands on
Frequency	Total Number of Trials	Tails 29 times.
		The relative frequency of getting Tails
		$=\frac{29}{50}$.
5. Mutually	Events are mutually exclusive if they	50 Examples of mutually exclusive events:
Exclusive	cannot happen at the same time.	
		- Turning left and right
	The probabilities of an exhaustive set of	- Heads and Tails on a coin
	mutually exclusive events adds up to 1.	Examples of non mutually exclusive
		events:
		- King and Hearts from a deck of cards,
		because you can pick the King of Hearts
6. Sample	The set of all possible outcomes of an	
Space	experiment.	+ 1 2 3 4 5 6 1 2 3 4 5 6 7
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		3 4 5 6 7 8 9
		4 5 6 7 8 9 10
		5 6 7 8 9 10 11
		6 7 8 9 10 11 12