Topic: Decimals

Topic/Skill	Definition/Tips	Example
1. Integer	A whole number that can be positive,	-3, 0, 92
	negative or zero.	
2. Decimal	A number with a decimal point in it. Can	3.7, 0.94, -24.07
	be positive or negative.	
3. Recurring	A decimal number that has digits that	1 - 0.222 - 0.2
Decimal	repeat forever.	$\frac{1}{3} = 0.333 \dots = 0.33$
	The part that repeats is usually shown by placing a dot above the digit that repeats, or dots over the first and last digit of the	$\frac{1}{7} = 0.142857142857 \dots = 0.\dot{1}4285\dot{7}$
	repeating pattern.	$\frac{77}{600} = 0.128333 \dots = 0.1283$

T	D. f:	Freedow
Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding	To find 10% , divide by 10	$10\% \text{ of } \pounds 36 = 36 \div 10 = \pounds 3.60$
10%		
3. Finding 1%	To find 1% , divide by 100	$1\% \text{ of } \pounds 8 = 8 \div 100 = \pounds 0.08$
4. Percentage	Difference	A games console is bought for £200
Change	$\frac{Difference}{Original} \times 100\%$	and sold for £250.
		% change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to	Divide the numerator by the	3 2 2 2 2 7 7
Decimals	denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to	Write as a fraction over 10, 100 or 1000	$0.36 = \frac{36}{100} = \frac{9}{25}$
Fractions	and simplify.	$0.36 = \frac{100}{100} = \frac{100}{25}$
7. Percentages to Decimals	Divide by 100	8% = 8 ÷ 100 = 0.08
8. Decimals to	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
Percentages		
9. Fractions to	Percentage is just a fraction out of 100.	$\frac{3}{25} = \frac{12}{100} = 12\%$
Percentages	Make the denominator 100 using	$\frac{1}{25} = \frac{1}{100} = 12\%$
_	equivalent fractions.	
	When the denominator doesn't go in to	$\frac{9}{17} \times 100 = 52.9\%$
	100, use a calculator and multiply the	$\frac{17}{17} \times 100 = 52.9\%$
	fraction by 100.	
10.	Percentage is just a fraction out of 100.	$14\% = \frac{14}{100} = \frac{7}{50}$
Percentages to	Write the percentage over 100 and	$14\% = \frac{1}{100} = \frac{1}{50}$
Fractions	simplify.	

Topic: Calculating with Percentages

1² 1

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
_		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \ge 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like ' before ' or	
	'original'	$90\% = \pounds 48.60$
		$1\% = \pm 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		100 of (1000 - (100
		$10\% \text{ of } \pounds 1000 = \pounds 100$
		Internet 2 × C100 C200
		Interest = $3 \times \pounds 100 = \pounds 300$

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2.	Perpendicular lines are at right angles.	
Perpendicular	There is a 90° angle between them.	
-	_	
3. Vertex	A corner or a point where two lines meet.	vertex
		c c
4. Angle	Angle Bisector: Cuts the angle in half.	в
Bisector		
	1. Place the sharp end of a pair of	k X
	compasses on the vertex.	
	2. Draw an arc, marking a point on each	
	line. 3. Without changing the compass put the	
	compass on each point and mark a centre	Angle Bisector
	point where two arcs cross over.	
	4. Use a ruler to draw a line through the	
	vertex and centre point.	
5.	Perpendicular Bisector: Cuts a line in	
Perpendicular	half and at right angles.	X
Bisector		
	1. Put the sharp point of a pair of	Line Bisector
	compasses on A.	<u> </u>
	2. Open the compass over half way on the line.	АВ
	3. Draw an arc above and below the line.	× 7
	4. Without changing the compass, repeat	X
	from point B.	
	5. Draw a straight line through the two	
6.	intersecting arcs.	
o. Perpendicular	The perpendicular distance from a point to a line is the shortest distance to that	
from an	line.	
External Point		\wedge
	1. Put the sharp point of a pair of	
	compasses on the point.	
	2. Draw an arc that crosses the line twice.	× ×
	3. Place the sharp point of the compass on	
	one of these points open over half way and	
	one of these points, open over half way and draw an arc above and below the line.	

	5. Draw a straight line through the two	
	intersecting arcs.	
7.	Given line PQ and point R on the line:	
Perpendicular		
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	
	equal width (giving points S and T)	P S R T Q
	3. Place the compass on point S, open over	
	halfway and draw an arc above the line.	
	4. Repeat from the other arc on the line	
	(point T).	
	5. Draw a straight line from the intersecting	
	arcs to the original point on the line.	
8. Constructing	1. Draw the base of the triangle using a	
Triangles	ruler.	
(Side, Side,	2. Open a pair of compasses to the width of	\mathbf{X}
Side)	one side of the triangle.	
	3. Place the point on one end of the line and	
	draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point	
	where the arcs intersect.	
9. Constructing	1. Draw the base of the triangle using a	A
Triangles	ruler.	\wedge
(Side, Angle,	2. Measure the angle required using a	4cm
Side)	protractor and mark this angle.	
	3. Remove the protractor and draw a line of	
	the exact length required in line with the	B <u>∕50°</u> 7am
	angle mark drawn.	7cm
	4. Connect the end of this line to the other	
	end of the base of the triangle.	
10.	1. Draw the base of the triangle using a	×
Constructing	ruler.	\sim
Triangles	2. Measure one of the angles required using	
(Angle, Side,	a protractor and mark this angle.	
Angle)	3. Draw a straight line through this point	
	from the same point on the base of the	y <u>42°</u> <u>51°</u> Z
	triangle.	8.3cm
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	

11.	1. Draw the base of the triangle using a	
Constructing	ruler.	*
an Equilateral	2. Open the pair of compasses to the exact	
Triangle (also	length of the side of the triangle.	
makes a 60°	3. Place the sharp point on one end of the	
angle)	line and draw an arc.	
	4. Repeat this from the other end of the	
	line.	MathBits.com
	5. Using a ruler, draw lines connecting the	A B
	ends of the base of the triangle to the point	
	where the arcs intersect.	
12. Loci and	A locus is a path of points that follow a	~
Regions	rule.	1
		AB
	For the locus of points closer to B than A,	X
	create a perpendicular bisector between A	
	and B and shade the side closer to B.	Points Closer to B than A.
	For the locus of points equidistant from A,	
	use a compass to draw a circle, centre A.	
		(<u>2cm</u>) (<u>2cm</u>)
		Points less than Points more than
		2cm from A 2cm from A
	Easthall and a function a surright dama to be	x
	For the locus of points equidistant to line	
	X and line Y, create an angle bisector.	
		Y
	For the locus of points a set distance from	
	For the locus of points a set distance from a line , create two semi-circles at either end	
	joined by two parallel lines .	
	Joined by two parallel lines.	• •)·
13. Equidistant	A point is equidistant from a set of objects	
-	if the distances between that point and	
	each of the objects is the same.	

Topic: Basic Probability

ν³⁷ ₩ γα

Topic/Skill	Definition/Tips	Example			
1. Probability	The likelihood/chance of something				
	happening.	Impossible Unlikely Even Chance Likely Certain			
	Is expressed as a number between 0				
	(impossible) and 1 (certain).				
	(impossible) and I (certain).	1-in-6 Chance 4-in-5 Chance			
	Can be expressed as a fraction, decimal,				
	percentage or in words (likely, unlikely,				
	even chance etc.)				
2. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability			
Notation	will occur.	of picking a Red Queen from a pack of cards.			
3. Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-			
Probability	Total Number of Possible Outcomes	sided die = $\frac{1}{c}$.			
4. Relative	Number of Successful Trials	$\frac{6}{1000}$ A coin is flipped 50 times and lands on			
Frequency	Total Number of Trials	Tails 29 times.			
1 0					
		The relative frequency of getting Tails			
		$=\frac{29}{50}$.			
5. Expected	To find the number of expected outcomes,	The probability that a football team			
Outcomes	multiply the probability by the number of	wins is 0.2 How many games would			
	trials.	you expect them to win out of 40?			
		$0.2 \times 40 = 8 games$			
6. Exhaustive	Outcomes are exhaustive if they cover the	When rolling a six-sided die, the			
	entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are			
		exhaustive, because they cover all the			
	The probabilities of an exhaustive set of	possible outcomes.			
7. Mutually	outcomes adds up to 1.Events are mutually exclusive if they	Examples of mutually exclusive events:			
Exclusive	cannot happen at the same time.	Examples of mutually exclusive events.			
		- Turning left and right			
	The probabilities of an exhaustive set of	- Heads and Tails on a coin			
	mutually exclusive events adds up to 1.				
		Examples of non mutually exclusive			
		events:			
		- King and Hearts from a deck of cards,			
		because you can pick the King of			
		Hearts			
8. Frequency	A diagram showing how information is	Wears glasses			
Tree	categorised into various categories.	18 Does not			
	The numbers at the ends of branches tells	Boll ⁵ Does not wear glasses			
	us how often something happened				
	(frequency).	Sirry Wears glasses			
		Drag			
	The lines connected the numbers are called	Does not wear glasses			

Tibshelf Community School

	branches.									
9. Sample	The set of all possible outcomes of an		+	1	2	3	4	5	6	
Space	experiment.		1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
			6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from a population.A sample is biased if individuals or groups from the population are not represented in	A samp from a						0	10 s	tudents
	the sample.									
11. Sample	The larger a sample size, the closer those	A samp					<u> </u>			
Size	probabilities will be to the true probability.	reliable	e res	sult	thar	n a s	sam	ple	size	of 10.

Topic: Probability (Trees and Venns)

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{-}$ red
210810110	probabilities.	3 1ed
	productifices.	$\frac{1}{1}$ red
	All branches must add up to 1 when	5 2 black
	adding downwards.	3 1
	8	
	This is because the probability of	4 black 5 red
	something not happening is 1 minus the	5 black
	probability that it does happen.	- black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		' <u>Without replacement</u> '
4. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P (A ') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	P(Blonde \cup Right Handed) refers to the
	event A or B or both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
		C
	$P(A \cap B)$ refers to the probability that	P(Blonde \cap Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	$A \cup B$ $A \cap B$
Diagrams	between a group of different things and	
	how they overlap.	
	r.	
	You may be asked to shade Venn Diagrams	
	as shown below and to the right.	$(A \cap B)' \qquad (A \cup B)'$
	and to the right	A B A B
	$A \cup B$ $A \cap B$	
	$\begin{bmatrix} A \\ B \end{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
	The Union The Intersection	
	'A or B or Both' 'A and B'	

6. Venn Diagram Notation	E means 'element of a set' (a value in the set) $\{\ \}$ means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question)	Set A is the even numbers less than 10. $A = \{2, 4, 6, 8\}$ Set B is the prime numbers less than 10. $B = \{2, 3, 5, 7\}$
	 A' means 'not in set A' (called complement) A ∪ B means 'A or B or both' (called Union) A ∩ B means 'A and B (called Intersection) 	$A \cup B = \{2, 3, 4, 5, 6, 7, 8\}$ $A \cap B = \{2\}$
7. AND rule for Probability	When two events, A and B, are independent:	What is the probability of rolling a 4 and flipping a Tails?
lor roouonity	$P(A \text{ and } B) = P(A) \times P(B)$	P(4 and Tails) = P(4) × P(Tails) = $\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened.	1st Bead 2nd Bead
	With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	$\frac{4}{9}$ Red $\frac{5}{9}$ Red $\frac{5}{9}$ Green $\frac{4}{8}$ Red $\frac{4}{8}$ Green

्र जूल

Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of Angles	 Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°. 	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. <i>BAC</i>	
3. Angles at a Point	Angles around a point add up to 360°.	$\frac{d}{c}a$ $a+b+c+d=360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x/y}{y/x}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	$\begin{array}{c} y \\ x \\ y \end{array}$
7. Corresponding Angles	Corresponding angles are equal . They look like F angles, but never say this in the exam.	$y \xrightarrow{x}$
8. Co-Interior Angles	Co-Interior angles add up to 180° . They look like C angles, but never say this in the exam.	$\begin{array}{c} y \\ x \\ y \\ \end{array}$

		(3)
9. Angles in a Triangle	Angles in a triangle add up to 180°.	B 45 ° 55°
10. Types of Triangles	 Right Angle Triangles have a 90° angle in. Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles. Base angles in an isosceles triangle are equal. 	Right Angled Isosceles
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	65° 93°
12. Polygon	A 2D shape with only straight edges .	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Names of Polygons	 3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon 	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular Polygon	$\frac{(n-2) \times 180}{n}$ You can also use the formula:	Size of Interior Angle in a Regular Pentagon = $\frac{(5-2) \times 180}{5} = 108^{\circ}$

্য 🏶 সন্ধ

	180 – Size of Exterior Angle	
17. Size of	360	Size of Exterior Angle in a Regular
Exterior Angle	\overline{n}	Octagon =
in a Regular		360
Polygon	You can also use the formula:	$\frac{360}{8} = 45^{\circ}$
	180 – Size of Interior Angle	-

/ 👫))(1)

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Real Horse 1500 mm high 2000 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life .	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) Look out for where the bearing is measured 	The bearing of <u>B</u> from <u>A</u>
	from.	The bearing of \underline{A} from \underline{B}
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.	
	Bearings: $NE = 045^\circ$, $W = 270^\circ etc$.	SW SE

Topic: Congruence and Similarity

/ **भ** ्रह्य

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size .	
Shupes	sume shape and sume size.	
	Shapes can be rotated or reflected but still	
2 Conservant	be congruent.	8cm F
2. Congruent Triangles	4 ways of proving that two triangles are congruent:	1 - C D 73 61
Thungleb		73' 8cm
	1. SSS (Side, Side, Side)	$B \qquad \bigvee_{E}$
	2. RHS (Right angle, Hypotenuse, Side)	
	3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS	BC = DF
	4. ASA (Angle, Side, Angle) or AAS	$\angle ABC = \angle EDF$ $\angle ACB = \angle EFD$
	ASS does not prove congruency.	\therefore The two triangles are
2 6: 1		congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes .	
Shapes	shape but uniterent sizes.	
	The proportion of the matching sides must	
	be the same, meaning the ratios of	
	corresponding sides are all equal.	24
4. Scale Factor	The ratio of corresponding sides of two similar shapes.	16
	sinna shapes.	10 15
	To find a scale factor, divide a length on	
	one shape by the corresponding length on	
	a similar shape.	Scale Factor = $15 \div 10 = 1.5$
5. Finding	1. Find the scale factor.	2cm 3cm
missing longths in	2. Multiply or divide the corresponding side to find a missing length.	
lengths in similar shapes	side to find a missing length.	4.5cm
sinna snapes	If you are finding a missing length on the	x x
	larger shape you will need to multiply by	
	the scale factor.	
	If you are finding a missing length on the	
	smaller shape you will need to divide by	Scale Factor = $3 \div 2 = 1.5$
	the scale factor.	$x = 4.5 \times 1.5 = 6.75cm$
6. Similar	To show that two triangles are similar,	y 📐
Triangles	show that:	85°
	1. The three sides are in the same	40°
	proportion	x z Y
	2. Two sides are in the same proportion,	
	and their included angle is the same	85*
	3. The three angles are equal	
		55°
1		X Z

Tibshelf Community School

Topic:	Coordinates	and Linear	Graphs
---------------	-------------	------------	--------

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3) B: (-6,-3) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2	Find the midpoint between (2,1) and (6,9)
	Method 2: Sketch the line and find the values half way between the two x and two y values.	$\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ So, the midpoint is (4,5)
3. Linear	Straight line graph.	Example:
Graph	The general equation of a linear graph is y = mx + c	Other examples: x = y y = 4
	 where <i>m</i> is the gradient and <i>c</i> is the y-intercept. The equation of a linear graph can contain an x-term, a y-term and a number. 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x + 3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form y = mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$ y =
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the <i>x</i> term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the <i>y</i> term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	$3 \cdot 2 \cdot 1 \cdot \frac{1}{9} + 2 \cdot 3 \cdot \frac{1}{9} + 2 \cdot $

5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient =	
	Change in y Rise	Gradient = -3/1 =-3
	$\frac{dual g c u g}{Change in x} = \frac{duc}{Run}$	-3
	chunge in x Kun	2
	The gradient can be positive (sloping	1 1
	upwards) or negative (sloping downwards)	
6. Finding the	Substitute in the gradient (m) and point	Find the equation of the line with
Equation of a	(\mathbf{x}, \mathbf{y}) in to the equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$ and	gradient 4 passing through (2,7).
Line <u>given a</u>	solve for c.	
point and a		y = mx + c
gradient		$7 = 4 \times 2 + c$ $c = -1$
		c = -1
		y = 4x - 1
7. Finding the	Use the two points to calculate the	Find the equation of the line passing
Equation of a	gradient. Then repeat the method above	through (6,11) and (2,3)
Line given two	using the gradient and either of the points.	
<u>points</u>		$m = \frac{11-3}{6-2} = 2$
		6-2 -2
		y = mx + c
		$y = mx + c$ $11 = 2 \times 6 + c$
		c = -1
		$\mathbf{c} = 1$
		y = 2x - 1
8. Parallel	If two lines are parallel , they will have the	y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 1$
Lines	same gradient. The value of m will be the	6x + 10 = 0 parallel?
	same for both lines.	
		Answer:
		Rearrange the second equation in to the form $y = mx + c$
		$\lim y = \max + c$
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3),
		the lines are parallel.
9.	If two lines are perpendicular , the	Find the equation of the line
Perpendicular	product of their gradients will always	perpendicular to $y = 3x + 2$ which
Lines	equal -1.	passes through (6,5)
	The gradient of one line will be the	Answer
	negative reciprocal of the gradient of the other line.	Answer: As they are perpendicular, the gradient
	ould line.	
	You may need to rearrange equations of	of the new line will be $-\frac{1}{3}$ as this is the
	lines to compare gradients (they need to be	negative reciprocal of 3.
	in the form $y = mx + c$)	
		y = mx + c

17 🐝

-	-	-
4	1	2
¥	10	1
	m	1
	-5	- J
	~	1

	$5 = -\frac{1}{3} \times 6 + c$ $c = 7$
	$y = -\frac{1}{3}x + 7$ Or