Topic: Factors and Multiples

Topic/Skill	Definition/Tips	Example
1. Multiple	The result of multiplying a number by an	The first five multiples of 7 are:
	integer.	
	The times tables of a number.	7, 14, 21, 28, 35
2. Factor	A number that divides exactly into another	The factors of 18 are:
	number without a remainder.	1, 2, 3, 6, 9, 18
	It is useful to write factors in pairs	The factor pairs of 18 are:
		1, 18
		2,9
		3,6
3. Lowest	The smallest number that is in the times	The LCM of 3, 4 and 5 is 60 because it
Common	tables of each of the numbers given.	is the smallest number in the 3, 4 and 5
Multiple		times tables.
(LCM)		
4. Highest	The biggest number that divides exactly	The HCF of 6 and 9 is 3 because it is
Common	into two or more numbers.	the biggest number that divides into 6
Factor (HCF)		and 9 exactly.
5. Prime	A number with exactly two factors .	The first ten prime numbers are:
Number		
	A number that can only be divided by itself	2, 3, 5, 7, 11, 13, 17, 19, 23, 29
	and one.	
	The number I is not prime, as it only has	
	one factor, not two.	
6. Prime	A factor which is a prime number.	The prime factors of 18 are:
Factor		2.2
		2,3
7. Product of	Finding out which prime numbers	$36 = 2 \times 2 \times 3 \times 3$
Prime Factors	multiply together to make the original	(2) 18 or $2^2 \times 3^2$
	number.	
	Lice a prime factor tree	(2) 9
	Use a prime factor tree.	
	Also known as 'prime factorisation'.	3 3

		Topic:
		Accuracy
Topic/Skill	Definition/Tips	Example
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is
	number.	in the 'tens' column.
2. Place Value	The names of the columns that determine	PLACE VALUE CHART
Columns	the value of each digit.	Thousands sands ds boint ths tab sandths sandths
	The 'ones' column is also known as the 'units' column.	Millions Hundred Ten Thousan Hundred Tens Dresimal Tenths Hundred Ten-Thou Millionth
3. Rounding	To make a number simpler but keep its	74 rounded to the nearest ten is 70,
	value close to what it was.	because 74 is closer to 70 than 80.
	If the digit to the right of the rounding	152,879 rounded to the nearest
	digit is less than 5, round down .	thousand is 153,000.
	If the digit to the right of the rounding	
1 Decimal	digit is 5 or more, round up.	In the number 0.272, the 7 is in the
4. Decimal Place	decimal point	second decimal place
1 luce	ucciniui point.	second decimal place.
		0.372 rounded to two decimal places is
		0.37, because the 2 tells us to round
		down.
		Careful with money - don't write $\pm 2/.4$,
5 Significant	The significant figures of a number are the	In the number 0.00821 the first
Figure	digits which carry meaning (ie. are	significant figure is the 8.
	significant) to the size of the number.	In the number 2 740, the 0 is not a
	The first significant figure of a number	significant figure.
	cannot be zero.	
		0.00821 rounded to 2 significant figures
	In a number with a decimal, trailing zeros are not significant.	is 0.0082.
		19357 rounded to 3 significant figures
		is 19400. We need to include the two
		zeros at the end to keep the digits in the
6 Truncation	A method of approximating a decimal	3 14159265 can be truncated to
0. Truncation	number by dropping all decimal places	3.1415 (note that if it had been
	past a certain point without rounding .	rounded, it would become 3.1416)
7. Estimate	To find something close to the correct	An estimate for the height of a man is
	answer.	1.8 metres.
8.	When using approximations to estimate the	$\frac{348+692}{2} \sim \frac{300+700}{-2000}$
Approximation	solution to a calculation, round each	$-\frac{0.526}{0.5} \approx \frac{0.5}{0.5} \equiv 2000$
	number in the calculation to 1 significant	
	figure.	Note that dividing by 0.5 is the same
	~ magns 'approximataly aqual to'	as muniplying by 2
	\sim means approximatery equal to	

Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	
		because $6 \times 6 = 36$
2.0.1.4	The reverse process of squaring a number.	
3. Solutions to $\frac{1}{2}$	Equations involving squares have two	Solve $x^2 = 25$
$x^{-} =$	solutions, one positive and one negative.	$x - F \circ x - F$
		x = 5 07 x = -5
		This can also be written as $r = \pm 5$
4 Cube	The number you get when you multiply a	$\frac{1}{1.8} \frac{27}{64} \frac{64}{125} \frac{125}{125}$
Number	number by itself and itself again.	$2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	V125 — 5
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	
		$3^{1} = 3$
		$3^2 = 9$
		$3^{3} = 27$
7		$3^{+} = 81$ etc.
/. Multiplication	(number or letter) add the newers	$7^{3} \times 7^{3} = 7^{3}$
Index Law	(number of letter), and the powers.	$a^{} \times a = a^{}$
Index Law	$a^m \times a^n = a^{m+n}$	$4x^{-} \times 2x^{-} = 8x^{}$
8. Division	When dividing with the same base (number	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers.	$x^9 \div x^2 = x^7$
		$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
9. Brackets	When raising a power to another power,	$(y^2)^5 = y^{10}$
Index Laws	multiply the powers together.	$(6^3)^4 = 6^{12}$
		$(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	$p^0 = 1$	
11. Negative	A negative power performs the reciprocal.	$3^{-2} = \frac{1}{2} = \frac{1}{2}$
Powers	$a^{-m} = \frac{1}{m}$	32 9
12 Fractional	a ^m The denominator of a fractional power acts	2 2
Powers	as a 'root'	$27\overline{3} = (\sqrt[3]{27})^{2} = 3^{2} = 9$
100015	us u 100t .	
	The numerator of a fractional power acts as a	$(25)^{\frac{3}{2}}$ $(\sqrt{25})^{3}$ $(5)^{3}$ 125
	normal power.	$\left(\frac{1}{16}\right) = \left(\frac{1}{\sqrt{16}}\right) = \left(\frac{3}{4}\right) = \frac{1}{64}$
	$a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m$	

Topic: Standard Form

5 👬

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \times 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \ge 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = $6x - 2y + 3$ $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not $2x3=6$
8. $p + p + p$	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by 'taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and
5. Substitution	Replace letters with numbers.Be careful of $5x^2$. You need to square first, then multiply by 5.	C=cost a = 3, b = 2 and c = 5. Find: $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$ $3. 7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape. Units include: <i>mm, cm, m</i> etc.	5 cm
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape. Units include: mm^2 , cm^2 , m^2	
3. Area of a Rectangle	Length x Width	4 cm $A = 36cm^2$
4. Area of a Parallelogram	Base x Perpendicular Height Not the slant height.	4 cm $3 cm7 \text{cm} A = 21 \text{cm}^2$
5. Area of a Triangle	Base x Height ÷ 2	9 4 5 $A = 24cm^2$
6. Area of a Kite	Split in to two triangles and use the method above.	$A = 8.8m^2$
7. Area of a Trapezium	$\frac{(a+b)}{2} \times h$ "Half the sum of the parallel side, times the height between them. That is how you calculate the area of a trapezium"	$\overset{6 \text{ cm}}{\underbrace{5 \text{ cm}}} A = 55 \text{ cm}^2$
8. Compound Shape	A shape made up of a combination of other known shapes put together.	

Example **Topic/Skill Definition/Tips** A pattern that you can **cut and fold** to 1. Net 1 make a model of a 3D shape. 2 3 4 5 3 6 2. Properties of **Faces = flat surfaces** A cube has 6 faces, 12 edges and 8 Solids **Edges = sides/lengths** vertices. Vertices = corners 3. Plans and This takes 3D drawings and produces 2D Original 3D Drawing Elevations drawings. Plan View: from above Side Elevation: from the side Front Elevation: from the front 2D Drawings Side Elevation Plan Front Elevation 4. Isometric A method for visually **representing 3D** ÷ Drawing objects in 2D.

Topic: 2D Representations of 3D Shapes

Topic: Circumference and Area

3	1	2	
d.	٢Ť	5.5	
	r×	Y	
	'S	5	
	~		,

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant	
	from a central point.	
	I I	
2. Parts of a	Radius – the distance from the centre of a	Parts of a Circle
Circle	circle to the edge	\square
	Diameter – the total distance across the	
	width of a circle through the centre.	
	Circumterence – the total distance around	Radius Diameter Circumference
	the outside of a circle	$\bigcirc \bigcirc $
	lie on a sircle	
	Tangent $-a$ straight line which touches a	
	circle at exactly one point	Chord Arc Tangent
	Arc – a part of the circumference of a	
	circle	
	Sector – the region of a circle enclosed by	
	two radii and their intercepted arc	\smile \bigcirc
	Segment – the region bounded by a chord	Segment Sector
	and the arc created by the chord	
3. Area of a	$A = \pi r^2$ which means 'pi x radius	If the radius was 5cm, then:
Circle	squared'.	$A = \pi \times 5^2 = 78.5 cm^2$
4.	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then:
Circumference		$\mathcal{L} = \pi \times 10 = 31.4 cm$
5π ('ni')	Discharge in the strength of a single divided	r S-VAR p r DISTR n r ▶r∠θ - Pol(r
<i>5. n</i> (pr)	by the diameter	2 2 $+$
	by the diameter.	
	$\pi \approx 3.14$	Ran# π DRG \sim
		• EXP Ans
6. Arc Length	The arc length is part of the circumference.	Arc Length = $\frac{115}{115} \times \pi \times 8 = 8.03 cm$
of a Sector		360
	Take the angle given as a fraction over	
	360 ° and multiply by the circumference .	O 4cm B
		115
7. Area of a	The area of a sector is part of the total area.	$\Delta rep = \frac{115}{5} \times \pi \times 4^2 = 16.1 \text{ cm}^2$
Sector		$Alca = \frac{1}{360} \wedge h \wedge 4 = 10.10h$
	Take the angle given as a fraction over	
	360° and multiply by the area .	O 4cm B
		115
		A

8. Surface	Curved Surface Area = πdh or $2\pi rh$	1
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$

Topic: Volume

		~
2	X	n.
	m	1
	۶Ş	۰.
	^	1

Topic/Skill	Definition/Tips	Example
1. Volume	Volume is a measure of the amount of space inside a solid shape. Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a Cube/Cuboid	$V = Length \times Width \times Height$ $V = L \times W \times H$ You can also use the Volume of a Prism	6cm
	formula for a cube/cuboid.	volume = $6 \times 5 \times 3$ = 90 cm ³
3. Prism	A prism is a 3D shape whose cross section is the same throughout.	Triangle Prism Pentagonal Prism Hexagonal Prism
4. Cross Section	The cross section is the shape that continues all the way through the prism .	Cross Section
5. Volume of a Prism	V = Area of Cross Section imes Length V = A imes L	Area of Cross Section
6. Volume of a Cylinder	$V = \pi r^2 h$	$5cm \qquad 2cm \qquad V = \pi(4)(5) = 62.8cm^3$

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras'	For any right angled triangle :	Finding a Shorter Side
Theorem		
	$a^2 + b^2 = c^2$	y 10
		SUBTRACT!
		8
	a	a = y, b = 8, c = 10
		$a^2 = c^2 - b^2$
	b	$y^2 = 100 - 64$
		$y^2 = 36$
	Used to find missing lengths .	v = 6
	a and b are the shorter sides, c is the	
	hypotenuse (longest side).	
2. 3D	Find missing lengths by identifying right	Can a pencil that is 20cm long fit in a
Pythagoras'	angled triangles.	pencil tin with dimensions 12cm, 13cm
Theorem		and 9cm? The pencil tin is in the shape
	You will often have to find a missing	of a cuboid.
	length you are not asked for before finding	
	the missing length you are asked for.	Hypotenuse of the base =
		$\sqrt{12^2 + 13^2} = 17.7$
		Diagonal of cuboid = $\sqrt{17.7^2 + 9^2}$ =
		19.8 <i>cm</i>
		No, the pencil cannot fit.

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	y = kx
	If y is directly proportional to x, this can be written as $y \propto x$	x
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents	4
3. Using	Direct : $\mathbf{v} = \mathbf{k}\mathbf{x}$ or $\mathbf{v} \propto \mathbf{x}$	p is directly proportional to a.
proportionality	Direct. $y = h x$ of $y \to x$	When $p = 12$, $q = 4$.
formulae	Inverse : $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	Find p when $q = 20$.
	1. Solve to find k using the pair of values in the question.	1. $p = kq$ 12 = k x 4 so k = 3
	2. Rewrite the equation using the k you have just found.	2. $p = 3q$
	3. Substitute the other given value from the question in to the equation to find the missing value.	3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct	Graphs showing direct proportion can be	Direct Proportion Graphs
Proportion with powers	written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	$y = 3x^{2}$ $y = 2x$ $y = 0.3x^{5}$
5. Inverse	Graphs showing inverse proportion can be	Inverse Proportion Graphs
Proportion with powers	written in the form $y = \frac{\kappa}{x^n}$ Inverse proportion graphs will never start at the origin.	$x = \frac{2}{x}$ $y = \frac{3}{x^2}$ $y = \frac{9}{x^2}$ $y = \frac{9}{x^2}$

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
1. Real Life	Graphs that are supposed to model some	40 -
Graphs	real-life situation.	38
Graphs	 The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning. 	(J) troo (J) tr
		A graph showing the cost of hiring a ladder for various numbers of days.
		The gradient shows the cost per day. It costs \pounds 3/day to hire the ladder.
		The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is £7.
2. Conversion	A line graph to convert one unit to	Conversion graph miles \longleftrightarrow kilometres
Graph	another.	km 20
	kilometres) or currencies (\$ and £)	16 12
	Find the value you know on one axis, read	8
	up/across to the conversion line and read	
	the equivalent value from the other axis.	0 5 10 miles15
		8 km - 5 miles
3. Depth of	Graphs can be used to show how the depth	1 2 3 4 5
Water in Containers	of water changes as different shaped containers are filled with water at a constant rate.	

Topic/Skill	Definition/Ting	Fyampla
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point . Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

Topic: Shape Transformations

े 👬 जहा

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic: Congruence and Similarity

୍ / 👬 ଅକ୍ଟ

Topic/Skill	Definition/Tips	Example
1. Congruent	Shapes are congruent if they are identical -	
Shapes	same shape and same size.	
	Shapes can be rotated or reflected but still	
	be congruent.	
2. Congruent	4 ways of proving that two triangles are	$C = D \frac{8 \text{cm}}{\sqrt{7x} \text{ fi}} F$
Triangles	congruent:	A 6t 8cm
	1 SSS (Side Side Side)	
	2 RHS (Right angle Hypotenuse Side)	Ě
	3. SAS (Side, Angle, Side)	BC = DF
	4. ASA (Angle, Side, Angle) or AAS	$\angle ABC = \angle EDF$
		$\angle ACB = \angle EFD$
	ASS does not prove congruency.	∴ The two triangles are
		congruent by AAS.
3. Similar	Shapes are similar if they are the same	
Shapes	snape but different sizes.	
	The proportion of the matching sides must	
	be the same meaning the ratios of	
	corresponding sides are all equal.	
4. Scale Factor	The ratio of corresponding sides of two	16 24
	similar shapes.	
		10 15
	To find a scale factor, divide a length on	
	one shape by the corresponding length on	
	a similar shape.	Scale Factor = $15 \div 10 = 1.5$
5. Finding	1. Find the scale factor.	2cm 3cm
missing	2. Multiply or divide the corresponding	
lengths in	side to find a missing length.	4.5cm
similar shapes	If you are finding a missing length on the	x
	larger shape you will need to multiply by	Y N
	the scale factor.	
		1
	If you are finding a missing length on the	Scale Factor $2 \cdot 2 - 1 \Gamma$
	smaller shape you will need to divide by	Scale Factor = $3 \div 2 = 1.5$ $x = 4.5 \times 1.5 = 6.75 \text{ cm}$
	the scale factor.	x = 4.5 × 1.5 = 0.75cm
6. Similar	To show that two triangles are similar,	y 🍐
Triangles	show that:	85°
	1 The three sides are in the same	40°
	proportion	x z
	2. Two sides are in the same proportion,	Ŷ
	and their included angle is the same	85°
	3. The three angles are equal	
		55°
		x z

