

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$ $\sqrt{36} = 6$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	
		because $6 \times 6 = 36$
2.0.1.	The reverse process of squaring a number.	Solve $x^2 = 25$
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions , one positive and one negative .	x = 5 or x = -5
		x = 3 or $x = -3$
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	
5. Cube Root	The number you multiply by itself and	$2^{3} = 2 \times 2 \times 2 = 8$ $\sqrt[3]{125} = 5$
2. 2300 1000	itself again to get another number.	V125 — 5
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	Security of A S A S - 125
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	
		$3^1 = 3$
		$3^2 = 9$
		$3^3 = 27$
		$3^4 = 81$ etc.
7.	When multiplying with the same base	$3^{3} = 27$ $3^{4} = 81 \text{ etc.}$ $7^{5} \times 7^{3} = 7^{8}$ $3^{12} \times 3^{12} \times 3^{13} = 3^{13}$
Multiplication	(number or letter), add the powers.	$u \times u - u$
Index Law	$m \dots n \qquad m+n$	$4x^5 \times 2x^8 = 8x^{13}$
8. Division	$a^{m} \times a^{n} = a^{m+n}$ When dividing with the same base (number)	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers .	$x^9 \div x^2 = x^7$
mucx Law	of letter), subtract the powers.	$x^{4} \div x^{7} = x$ $20a^{11} \div 5a^{3} = 4a^{8}$
	$a^m \div a^n = a^{m-n}$	$20a \div 3a = 4a$
9. Brackets	When raising a power to another power,	$(v^2)^5 = v^{10}$
Index Laws	multiply the powers together.	$(6^3)^4 = 6^{12}$
	1 3	$(y^{2})^{5} = y^{10}$ $(6^{3})^{4} = 6^{12}$ $(5x^{6})^{3} = 125x^{18}$
	$(a^m)^n = a^{mn}$	
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	$p^0 = 1$	
11. Negative	A negative power performs the reciprocal.	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
Powers	$a^{-m} = \frac{1}{a^m}$	$3 - \frac{1}{3^2} - \frac{1}{9}$
10 F		2
12. Fractional	The denominator of a fractional power acts	$27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = 3^2 = 9$
Powers	as a 'root'.	,
	The numerator of a fractional power acts as	$(25)^{\frac{3}{2}}$ $(\sqrt{25})^{\frac{3}{2}}$ $(5)^{\frac{3}{2}}$ 125
	a normal power.	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
	a normal power.	(16) (√16) (4) 64
	$\frac{m}{m}$ (n)	
	$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$	

Topic: Accuracy

Topic/Skill	Definition/Tips	Example	
1. Place Value	The value of where a digit is within a	In 726, the value of the 2 is 20, as it is	
	number.	in the 'tens' column.	
2. Place Value	The names of the columns that determine	PLACE VALUE CHART	
Columns	the value of each digit. The 'ones' column is also known as the 'units' column.	Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Ones Decimal Point Tenths Hundredths Ten-Thousandths Ten-Thousandths Millionths	
3. Rounding	To make a number simpler but keep its	74 rounded to the nearest ten is 70,	
	value close to what it was.	because 74 is closer to 70 than 80.	
	If the digit to the right of the rounding digit is less than 5, round down . If the digit to the right of the rounding digit is 5 or more, round up .	152,879 rounded to the nearest thousand is 153,000.	
4. Decimal	The position of a digit to the right of a	In the number 0.372, the 7 is in the	
Place	decimal point.	second decimal place.	
		0.372 rounded to two decimal places is	
		0.37, because the 2 tells us to round	
		down.	
		Careful with money - don't write £27.4, instead write £27.40	
5. Significant	The significant figures of a number are the	In the number 0.00821, the first	
Figure	digits which carry meaning (ie. are significant) to the size of the number.	significant figure is the 8.	
		In the number 2.740, the 0 is not a	
	The first significant figure of a number cannot be zero .	significant figure.	
		0.00821 rounded to 2 significant figures	
	In a number with a decimal, trailing zeros are not significant.	is 0.0082.	
		19357 rounded to 3 significant figures	
		is 19400. We need to include the two	
		zeros at the end to keep the digits in the	
6. Truncation	A method of approximating a decimal	same place value columns. 3.14159265 can be truncated to	
0. Huncanon	number by dropping all decimal places	3.1415 (note that if it had been	
	past a certain point without rounding.	rounded, it would become 3.1416)	
7. Error	A range of values that a number could	0.6 has been rounded to 1 decimal	
Interval	have taken before being rounded or	place.	
	truncated.		
		The error interval is:	
	An error interval is written using		
	inequalities, with a lower bound and an	$0.55 \le x < 0.65$	
	upper bound.	The leaves have 4 is 0.55	
	Note that the lower hound incomplity and he	The lower bound is 0.55	
	Note that the lower bound inequality can be	The upper bound is 0.65	
	'equal to', but the upper bound cannot be		

	'equal to'.	
8. Estimate	To find something close to the correct	An estimate for the height of a man is
	answer.	1.8 metres.
9.	When using approximations to estimate the	$\frac{348 + 692}{0.526} \approx \frac{300 + 700}{0.5} = 2000$
Approximation	solution to a calculation, round each	$\frac{-0.526}{0.526} \sim \frac{-0.5}{0.5} = 2000$
	number in the calculation to 1 significant	
	figure.	'Note that dividing by 0.5 is the same
		as multiplying by 2'
	≈ means 'approximately equal to'	

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^b$	$8400 = 8.4 \times 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \times 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2 \text{ or } 5y^2$
2. Equation	A statement showing that two	2y - 17 = 15
	expressions are equal	
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
	An identity uses the symbol: ≡	
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'.	2x + 3y + 4x - 5y + 3 $= 6x - 2y + 3$
	Be careful with negatives. x^2 and x are not like terms.	$3x + 4 - x^2 + 2x - 1 = 5x - x^2 + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then p^3 =2x2x2=8, not 2x3=6
8. p + p + p	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Expanding double brackets	To expand a double bracket, multiply the first term in the first bracket by the expression inside the second bracket , then repeat for the second term in the first bracket (multiplying by the terms in the second bracket), then simplify.	$(n+5)(n-2) = n^2 -2n +5n -10$ $= n^2 +3n-10$
11. Factorise	The reverse of expanding. Factorising is writing an expression as a product of terms by 'taking out' a common factor.	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides $2x = 10$ Divide by 2 on both sides $x = 5$
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z $yz = 2x - 1$ Add 1 to both sides $yz + 1 = 2x$ Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. $C = 3N + 5$ Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers. Be careful of $5x^2$. You need to square first, then multiply by 5.	a = 3, b = 2 and c = 5. Find: $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$ $3. 7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic/Skill	Definition/Tips	Example	
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender	
Data	Quantitative Data – numerical data	etc.	
	Continuous Data – data that can take any numerical value within a given range. Discrete Data – data that can take only specific values within a given range.	Continuous Data – weight, voltage etc. Discrete Data – number of children, shoe size etc.	
2. Grouped	Data that has been bundled in to	Foot length, I, (cm) Number of children	
Data	categories.	10 ≤ <i>l</i> < 12 5	
		12 ≤ <i>l</i> < 17 53	
	Seen in grouped frequency tables,		
2. D.:	histograms, cumulative frequency etc.	D: D: 1: 11	
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a	
/Secondary Data	specific purpose.	student for their own research project.	
Data	Secondary Data – collected by someone	Secondary Data – Census data used to	
	else for another purpose.	analyse link between education and	
	ease for another purpose.	earnings.	
4. Mean	Add up the values and divide by how many	The mean of 3, 4, 7, 6, 0, 4, 6 is	
	values there are.	3+4+7+6+0+4+6	
		$\frac{3}{7} = 5$	
5. Mean from a	1. Find the midpoints (if necessary)	Height in cm Frequency Midpoint F × M	
Table	2. Multiply Frequency by values or	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	midpoints	30 < h ≤ 40 6 35 6×35=210 Total 24 Ignore! 450	
	3. Add up these values	Estimated Mean	
	4. Divide this total by the Total Frequency	height: 450 ÷ 24 =	
		18.75cm	
	If grouped data is used, the answer will be an estimate .	10.75011	
6. Median	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6	
Value	The induite value.	1 md the median of: 4, 3, 2, 3, 6, 7, 6	
Varue	Put the data in order and find the middle	Ordered: 2, 3, 4, 5 , 6, 6, 7	
	one.	5136164. 2, 3, 1, 5, 0, 0, 7	
	If there are two middle values , find the	Median = 5	
	number half way between them by adding		
	them together and dividing by 2.		
7. Median	Use the formula $\frac{(n+1)}{2}$ to find the position of	If the total frequency is 15, the median	
from a Table	the median.	will be the $\left(\frac{15+1}{2}\right) = 8th$ position	
	the median.	2 /	
	n is the total frequency.		
8. Mode	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4	
/Modal Value	1	. , - , , - , - , - , - , - , - , - ,	
	Can have more than one mode (called bi-	Mode = 4	
	modal or multi-modal) or no mode (if all		
	values appear once)		
9. Range	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.	
		D 100 0 00	
	Range is a 'measure of spread'. The smaller	Range = $102-3 = 99$	

	the range the more <u>consistent</u> the data.	
10. Outlier	A value that 'lies outside' most of the other values in a set of data. An outlier is much smaller or much larger than the other values in a set of data.	Outlier Outlier 0 20 40 60 80 100

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JH1 II	7
14610		2	1111	5
		3	JHT 1	6
		4	1111	5
		5	111	3
2. Bar Chart	Democrate data as visitinal blooks	Total		26
2. Bar Chart	Represents data as vertical blocks.	14		
	x - axis shows the type of data	12		
	y - axis shows the frequency for each	ار الله الله الله الله الله الله الله ال		
	type of data	Frequency		
	Each bar should be the same width	9 6 -		
		4-		
	There should be gaps between each bar Remember to label each axis.	2•		
	Remember to label each axis.	0	1 2 3	4
		Nu	ımber of pets o	wned
3. Types of	Compound/Composite Bar Charts show		Iron	
Bar Chart	data stacked on top of each other.	70-	Carbon	_
		60-		
		50		
		Weight (gm) 40	-	
		20-		
		10-		
		0 1 A	B Sample	С
			ainfall	
	Comparative/Dual Bar Charts show data	50	an nan	
	side by side.	40		Key:
		30		London Bristol
		cm		
		20		
		10		
		o lan Feb	Mar Anr May	,
			o Mar Apr May Month Bar Chart	
4. Pie Chart	Used for showing how data breaks down			
	into its constituent parts.		luash ace	
	•	Tennis 40		
	When drawing a pie chart, divide 360° by	6	144°	
	the total frequency. This will tell you how	Hockey	80°	
	many degrees to use for the frequency of		Netball	
	each category.			
		If there are 40 ==	onlo in o ~	invov than
	Remember to label the category that each	If there are 40 pe	-	-
	sector in the pie chart represents.	each person will	oc worui 3	∪∪ −4 ∪=9
		of the pie chart.		

5. Pictogram	Uses pictures or symbols to show the value of the data. A pictogram must have a key .	Black Red Factor
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	14 12 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9
7. Two Way	A table that organises data around two	Question: Complete the 2 way table below.
Tables		Boys 10 Right Handed Total 58
Tables	categories.	Girls
		Total 84 100
	Fill out the information step by step using	Answer: Step 1, fill out the easy parts (the totals)
	1 , 1	Boys 10 Right Handed Total Boys 10 48 58
	the information given.	Girls 40 38
		Total 16 84 100
	Make sure all the totals add up for all	Answer: Step 2, fill out the remaining parts
	columns and rows.	Left Handed Right Handed Total
	Columns and rows.	Boys 10 48 58 Girls 6 36 42
		Total 16 84 100

Topic/Skill	Definition/Tips	Example
1. Correlation	Correlation between two sets of data means	There is correlation between
	they are connected in some way.	temperature and the number of ice
		creams sold.
2. Causality	When one variable influences another	The more hours you work at a
	variable.	particular job (paid hourly), the higher
	, 12210220	your income from that job will be.
3. Positive	As one value increases the other value	Line of Beat Fit
Correlation	increases.	
		-
		Positive Correlation
4. Negative	As one value increases the other value	* * *
Correlation	decreases.	* * * * * * * * * * * * * * * * * * *
		* * * * * * * * * * * * * * * * * * *
		Outlier
		Negative Correlation
5. No	There is no linear relationship between	5 X
Correlation	the two.	x x x x
6. Strong	When two sets of data are closely linked .	No Correlation
Correlation	When two sets of data are closely linked.	
Correlation		
		Strong
		Positive
7. Weak	When two sets of data have completion but	Correlation
Correlation	When two sets of data have correlation, but	
Correlation	are not closely linked.	
		Weak
		Positive
0.0	A 1: 1: 1 1 C4 • 11	Correlation
8. Scatter	A graph in which values of two variables	
Graph	are plotted along two axes to compare	
	them and see if there is any connection	
	between them.	*
9. Line of Best	A straight line that best represents the	Frantici
Fit	data on a scatter graph.	x x x
	Service Service Service	x x x
		x x
10.0.1	A 1 1 (1)	12
10. Outlier	A value that 'lies outside' most of the other	10 Outlier
	values in a set of data.	8
	An outlier is much smaller or much	6
	larger than the other values in a set of data.	2
		0
		0 20 40 60 80 100

Subject: Maths	₩.
	Tibshelf Community School

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10%, divide by 10	$10\% \text{ of } £36 = 36 \div 10 = £3.60$
3. Finding 1%	To find 1%, divide by 100	$1\% \text{ of } £8 = 8 \div 100 = £0.08$
4. Percentage Change	$rac{Difference}{Original} imes 100\%$	A games console is bought for £200 and sold for £250. % change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using equivalent fractions.	$\frac{3}{25} = \frac{12}{100} = 12\%$
	When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100.	$\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$

Topic: Calculating with Percentages

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of 500 = 100
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \times 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage .	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like 'before' or	
	'original'	90% = £48.60
		1% = £0.54
		100% = £54
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		10% of £1000 = £100
		Interest = $3 \times £100 = £300$

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
	XX7.44	
2 Proportion	Written using the ':' symbol.	In a class with 12 hove and 0 girls, the
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5 \cdot 7 - 1 \cdot 7$ in the form $1 \cdot n$
form $1: n$ or	numbers to make one part equal 1 .	$5:7=1:\frac{7}{5}$ in the form 1: n
n: 1	• •	$5:7=\frac{5}{7}:1$ in the form n: 1
5. Sharing in a	1. Add the total parts of the ratio.	Share £60 in the ratio $3:2:1$.
Ratio	2. Divide the amount to be shared by this value to find the value of one part.	3+2+1=6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	$3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$
		£30:£20:£10
	Use only if you know the total .	
6. Proportional	Comparing two things using multiplicative	X 2
Reasoning	reasoning and applying this to a new	30 minutes 60 pages
	situation.	? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	X 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450g
		So 1 cake = $150g$ (÷ by 3)
		So 5 cakes = 750 g (x by 5)
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method.	between Ann, Bob and Cat. Given that
		Bob had £16, found out the total
		amount of money shared.
		£ $16 = 2$ parts
		So £8 = 1 part
		$3 + 2 + 5 = 10$ parts, so $8 \times 10 = £80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System	·	1 metre = 100 centimetres
	- the metre for length	1 centimetre = 10 millimetres
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Length: mm, cm, m, km	
	Mass: mg, g, kg	
	Volume: ml, cl, l	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
	based on human quantities	$1 \ gallon = 8 \ pints$
	Length: inch, foot, yard, miles Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	5 miles ≈ 8 kilometres
Imperial Units	between metric and imperial units.	$1 \ gallon \approx 4.5 \ litres$
		$2.2 pounds \approx 1 kilogram$
		1 inch = 2.5 centimetres
4. Speed,	Speed = Distance ÷ Time	Speed = 4mph
Distance, Time	Distance = Speed x Time	Time = 2 hours
,,	Time = Distance ÷ Speed	2 220 333
		Find the Distance.
	S T	$D = S \times T = 4 \times 2 = 8 miles$
	Remember the correct units.	
5. Density,	Density = Mass ÷ Volume	Density = $8kg/m^3$
Mass, Volume	Mass = Density x Volume	Mass = 2000g
	Volume = Mass ÷ Density	
		Find the Volume.
	M	$V = M \div D = 2 \div 8 = 0.25m^3$
	D V	
	Remember the correct units.	
6. Pressure,	Pressure = Force ÷ Area	Pressure = 10 Pascals
Force, Area	Force = Pressure x Area	Area = 6cm^2
1 0100, 11100	Area = Force ÷ Pressure	11104 - 00111
	Tita - I vice . I legguit	Find the Force

	p × A	$F = P \times A = 10 \times 6 = 60 N$
	Remember the correct units.	
7. Distance-	You can find the speed from the gradient	Distance
Time Graphs	of the line (Distance ÷ Time)	(Km) 3
	The steeper the line, the quicker the speed.	,
	A horizontal line means the object is not	,,/
	moving (stationary).	0 0 1 2 3 4 5 6 7 8 9 10
		Time (Hours)

Topic: Shape Transformations

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	Q R 3 3 4 P R' P'
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point.	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	х.
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x = ?$ is a vertical line. Line $y = ?$ is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformations	Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details.	- Translation, Vector - Rotation, Direction, Angle, Centre - Reflection, Equation of mirror line - Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. $SF = -2$ will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y-axis$, then exactly one vertex is invariant.

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Real Horse 1500 mm high 2000 mm long Scale 1:10 Drawn Horse 150 mm high 200 mm long 200 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life.	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) 	The bearing of <u>B</u> from <u>A</u>
	Look out for where the bearing is measured <u>from</u> .	The bearing of $\underline{\underline{A}}$ from $\underline{\underline{B}}$
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.	NW NE
	Bearings: $NE = 045^{\circ}$, $W = 270^{\circ}$ etc.	SW SE

Topic: Loci and Constructions

18
∵ "
,
֡

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2.	Perpendicular lines are at right angles.	
Perpendicular	There is a 90° angle between them.	
I I I I I I I		
2.17	A	vertex
3. Vertex	A corner or a point where two lines meet.	A
		c B
4. Angle	Angle Bisector: Cuts the angle in half.	
Bisector		
	1. Place the sharp end of a pair of	\times \times
	compasses on the vertex.	
	2. Draw an arc, marking a point on each line.	
	3. Without changing the compass put the	
	compass on each point and mark a centre	Angle Bisector
	point where two arcs cross over.	
	4. Use a ruler to draw a line through the	
	vertex and centre point.	
5.	Downandicular Disactors Cuts a line in	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Perpendicular	Perpendicular Bisector: Cuts a line in half and at right angles.	
Bisector	nan and at right angles.	
	1. Put the sharp point of a pair of	Line Bisector
	compasses on A.	Line bisector
	2. Open the compass over half way on the	A B
	line.	
	3. Draw an arc above and below the line.4. Without changing the compass, repeat	
	from point B.	
	5. Draw a straight line through the two	
	intersecting arcs.	
6.	The perpendicular distance from a point	
Perpendicular	to a line is the shortest distance to that	P
from an	line.	*
External Point	1. Put the sharp point of a pair of	
	compasses on the point.	
	2. Draw an arc that crosses the line twice.	Ţ
	3. Place the sharp point of the compass on	*
	one of these points, open over half way and	
	draw an arc above and below the line.	
	4. Repeat from the other point on the line.	

	5 Draw a straight line through the two	
	5. Draw a straight line through the two	
7	intersecting arcs.	
7.	Given line PQ and point R on the line:	<u> </u>
Perpendicular		
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	P
	equal width (giving points S and T)	P S R $^{\prime 1}$ Q
	3. Place the compass on point S, open over	
	halfway and draw an arc above the line.	
	4. Repeat from the other arc on the line	
	(point T).	
	5. Draw a straight line from the intersecting	
	arcs to the original point on the line.	
8. Constructing	1. Draw the base of the triangle using a	/ /
Triangles	ruler.	
(Side, Side,	2. Open a pair of compasses to the width of	
Side)	one side of the triangle.	
	3. Place the point on one end of the line and	
	draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point	
	where the arcs intersect.	
9. Constructing	1. Draw the base of the triangle using a	A
Triangles	ruler.	
(Side, Angle,	2. Measure the angle required using a	4cm/
Side)	protractor and mark this angle.	
	3. Remove the protractor and draw a line of	
	the exact length required in line with the	B \(\frac{150^{\circ}}{2} \)
	angle mark drawn.	7cm
	4. Connect the end of this line to the other	
	end of the base of the triangle.	
10.	1. Draw the base of the triangle using a	X
Constructing	ruler.	\sim
Triangles	2. Measure one of the angles required using	
(Angle, Side,	a protractor and mark this angle.	
Angle)	3. Draw a straight line through this point	
	from the same point on the base of the	y 42° 51° Z
	triangle.	8.3cm
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	
		l

11. Constructing an Equilateral Triangle (also makes a 60° angle)	 Draw the base of the triangle using a ruler. Open the pair of compasses to the exact length of the side of the triangle. Place the sharp point on one end of the line and draw an arc. Repeat this from the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect. 	MathBits.com A B
12. Loci and Regions	A locus is a path of points that follow a rule. For the locus of points closer to B than A, create a perpendicular bisector between A and B and shade the side closer to B.	A B Points Closer to B than A
	For the locus of points equidistant from A , use a compass to draw a circle , centre A.	Points less than 2cm from A Points more than 2cm from A
	For the locus of points equidistant to line X and line Y, create an angle bisector.	Y
	For the locus of points a set distance from a line , create two semi-circles at either end joined by two parallel lines .	D
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same.	