Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121.
Number	number by itself.	144, 169, 196, 225
		$9^2 = 9 \times 9 = 81$
2. Square Root	The number you multiply by itself to get	$\sqrt{36} = 6$
	another number.	,
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	$2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	-1 -
		$3^{1} = 3$
		$3^2 = 9$
		$3^3 = 27$
		$3^4 = 81$ etc.
7.	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
Multiplication	(number or letter), add the powers.	$a^{12} \times a = a^{13}$
Index Law	$-m \sim -n -m+n$	$4x^3 \times 2x^3 = 8x^{13}$
9 Division	$\frac{a^{n} \times a^{n}}{a^{n}} = \frac{a^{n+n}}{a^{n}}$	157.154.153
o. Division	or letter) subtract the newers	$15^{\circ} \div 15^{\circ} = 15^{\circ}$
much Law	of fetter), subtract the powers.	$x^{2} - x^{2} = x^{2}$
	$a^m \div a^n - a^{m-n}$	$20a^{-1} \div 5a^{-1} = 4a^{-1}$
0 Brackets	$\mathbf{u} \cdot \mathbf{u} - \mathbf{u}$ When raising a power to another power	$(2^2)^5 - 2^{10}$
J. Diackets	multiply the powers together	(y) - y $(6^3)^4 - 6^{12}$
Index Laws	indupity the powers together.	(0) = 0 $(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	(5x) = 125x
10. Notable	$n = n^1$	$99999^0 = 1$
Powers	$p^{-}p^{-}p^{-}$ $n^{0}=1$	
11. Negative	A negative power performs the reciprocal	_ 1 1
Powers	1	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
	$a^{-m} = \frac{1}{a^m}$	5 7
12. Fractional	The denominator of a fractional power acts	$27^{\frac{2}{5}}$ $(^{3}\sqrt{27})^{2}$ 2^{2} 0
Powers	as a 'root'.	$2/3 = (\sqrt{2}) = 3^2 = 9$
		3 2
	The numerator of a fractional power acts as	$(25)^{\frac{5}{2}}$ $(\sqrt{25})^{3}$ $(5)^{3}$ 125
	a normal power.	$\left(\frac{16}{16}\right) = \left(\frac{16}{\sqrt{16}}\right) = \left(\frac{1}{4}\right) = \frac{1}{64}$
	$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$	

Tibshelf Community School

Topic: Standard Form

5 👬

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \times 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \ge 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Surds

Topic/Skill	Definition/Tips	Example
1. Rational	A number of the form $\frac{p}{q}$, where p and q are	$\frac{4}{2}$, 6, $-\frac{1}{2}$, $\sqrt{25}$ are examples of rational
Number	integers and $q \neq 0$.	numbers.
		_
	A number that cannot be written in this	$\pi, \sqrt{2}$ are examples of an irrational
	form is called an 'irrational' number	numbers.
2. Surd	The irrational number that is a root of a	$\sqrt{2}$ is a surd because it is a root which
	determined exactly	cannot be determined exactly.
	determined exactly.	$\sqrt{2} = 1.41421256$ which power
	Surds have infinite non-recurring	$\sqrt{2} = 1.41421550 \dots$ which herei
	decimals.	
3. Rules of Surds	$\sqrt{oldsymbol{a}oldsymbol{b}} = \sqrt{oldsymbol{a}} imes \sqrt{oldsymbol{b}}$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$
	\overline{a} \sqrt{a}	
	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	$\frac{25}{25} = \frac{\sqrt{25}}{25} = \frac{5}{5}$
		$\sqrt{36}$ $\sqrt{36}$ 6
	$a\sqrt{c} \pm b\sqrt{c} = (a \pm b)\sqrt{c}$	$2\sqrt{5} + 7\sqrt{5} - 9\sqrt{5}$
		203 + 703 - 903
	$\sqrt{a} \times \sqrt{a} = a$	$\sqrt{7} \times \sqrt{7} = 7$
4. Rationalise	The process of rewriting a fraction so that	$\sqrt{3}$ $\sqrt{3} \times \sqrt{2}$ $\sqrt{6}$
a Denominator	the denominator contains only rational	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2} \times \sqrt{2}} = \frac{1}{2}$
	numbers.	
		$\frac{6}{6} = \frac{6(3-\sqrt{7})}{6}$
		$3 + \sqrt{7} (3 + \sqrt{7})(3 - \sqrt{7})$
		$-\frac{18-6\sqrt{7}}{1}$
		$-\frac{9-7}{9-7}$
		$=\frac{18-6\sqrt{7}}{9}=9-3\sqrt{7}$
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Topic: Fractions

	and keep the denominator the same .	$\frac{\frac{2}{3}}{\frac{4}{5}} = \frac{\frac{10}{15}}{\frac{12}{15}}$
		$\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12.	Multiply the numerators together and	3 2 6 1
Multiplying	multiply the denominators together.	$\frac{1}{8} \times \frac{1}{9} = \frac{1}{72} = \frac{1}{12}$
Fractions		
13. Dividing	'Keep it, Flip it, Change it – KFC'	3 5 3 6 18 9
Fractions	Keep the first fraction the same	$\frac{1}{4} - \frac{1}{6} = \frac{1}{4} \times \frac{1}{5} = \frac{1}{20} = \frac{1}{10}$
	Flip the second fraction upside down	
	Change the divide to a multiply	
	Multiply by the reciprocal of the second	
	fraction.	

Topic: Sequences

-	-	ï
3	A W	
ľ	YAY	
1	Ϋ́ς,	ļ
-	\checkmark	

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	
		Sequence is: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n - 1$
	term that is in the nth position of the	$T_{\rm b} = 100^{\rm th}$ to $T_{\rm b} = 2 \times 100 = 1 = 200$
	sequence.	The 100° term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a	
	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4 <i>n</i>
	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
		to get 3.
6 Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1 1 2 3 5 8 13 21 34
type sequences	by adding up the previous two terms	1,1,2,3,3,0,13,21,31
		An example of a Fibonacci-type
		sequence is:
		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
	a number called the common ratio, r .	The common ratio is 5
		Another exemple of a geometric
		Anomer example of a geometric
		81 - 27 9 - 3 1
		The common ratio is $=\frac{1}{2}$
9 O 1		$\frac{1}{2}$ $\frac{1}{6}$ $\frac{1}{12}$ $\frac{1}{20}$ $\frac{1}{30}$ $\frac{1}{42}$
8. Quadratic	A sequence of numbers where the second	
sequence	unterence is constant.	+4 +6 +8 +10 +12
	A quadratic sequence will have a n^2 term	+2 +2 +2 +2
9. nth term of a	ar ⁿ⁻¹	The nth term of 2, 10, 50, 250 Is
geometric	ui	The full term of 2, 10, 00, 200 in 15
sequence	where <i>a</i> is the first term and <i>r</i> is the	$2 \times 5^{n-1}$
	common ratio	

10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
_	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	
	nth term of the quadratic sequence.	Nth term of this set of numbers is
		-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
11. Triangular	The sequence which comes from a pattern	1 3 6 10
numbers	of dots that form a triangle.	
	1, 3, 6, 10, 15, 21	

Topic: Algebra

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = $6x - 2y + 3$ $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x2x2=8$, not $2x3=6$
8. $p + p + p$	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by 'taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	$ax^2 + bx + c$	$ x^2 8x^2 - 3x + 7 $
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Factorising	When a quadratic expression is in the form	$x^2 + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		2 . 2 . 0 . (
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$ (because 14 and 2 add to give 12 and
		(because +4 and -2 and to give +2 and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$\frac{x^2 - 25}{x^2 - 25} = (x + 5)(x - 5)$
of Two	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares		
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a negative solution .	$x = \pm 7$
5. Solving	Factorise and then solve = 0 .	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(<i>a</i> = 1)	Make sure the equation $= 0$ before	x = -5 or x = 2
	factorising.	
7. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics when $a \neq 1$	$ax^2 + bx + c$	$1.6 \times -4 = -24$
when $u \neq 1$	2 Find two numbers that add to give b and	2 Two numbers that add to give ± 5 and
	multiply to give ac.	multiply to give -24 are $+8$ and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4) - 1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the	
	repeated bracket, the other will be made of the factors outside each of the two brackets	
8 Solving	Factorise the quadratic in the usual way	Solve $2r^2 + 7r - 4 = 0$
Ouadratics by	Solve = 0	$\int \frac{1}{\sqrt{2\pi}} $
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	
	factorising.	$x = \frac{1}{2}$ or $x = -4$

Topic: Inequalities

Definition/Tips	Example
An inequality says that two values are not	7 ≠ 3
equal.	
	$x \neq 0$
$a \neq b$ means that a is not equal to b.	
x > 2 means x is greater than 2	State the integers that satisfy
x < 3 means x is less than 3	$-2 < x \le 4.$
$x \ge 1$ means x is greater than or equal to	
1	-1, 0, 1, 2, 3, 4
$x \le 6$ means x is less than or equal to 6	
Inequalities can be shown on a number line.	
	-2 -1 0 1 2 3 $x > 0$
Open circles are used for numbers that are	
less than or greater than $(\langle or \rangle)$	↑
	-5-4-3-2-1012345 x < 2
Closed circles are used for numbers that	0
are less than or equal or greater than or	
Equal $(\leq 01 \geq)$	Shade the region that satisfies:
coordinate grid	Shade the region that satisfies. y > 2x + x > 1 and $y < 2$
coordinate grid.	$y > 2x, x > 1$ and $y \leq 5$
If the inequality is strict $(x > 2)$ then use a	
If the inequality is strict $(x > 2)$ then use a dotted line	y = 2x
If the inequality is not strict ($r < 6$) then	-4
use a solid line	y = 3
	R
Shade the region which satisfies all the	
inequalities.	
1	x = 1
	9 2 4
	Definition/TipsAn inequality says that two values are not equal. $a \neq b$ means that a is not equal to b. $x > 2$ means x is greater than 2 $x < 3$ means x is less than 3 $x \ge 1$ means x is greater than or equal to

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter.	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5
2. Inverse	Opposite	The inverse of addition is subtraction. The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and
5. Substitution	Replace letters with numbers.Be careful of $5x^2$. You need to square first, then multiply by 5.	C=cost a = 3, b = 2 and c = 5. Find: $1. 2a = 2 \times 3 = 6$ $2. 3a - 2b = 3 \times 3 - 2 \times 2 = 5$ $3. 7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Algebraic Fractions

5 👬

Topic/Skill	Definition/Tips	Example
1. Algebraic	A fraction whose numerator and	6 <i>x</i>
Fraction	denominator are algebraic expressions.	$\overline{3x-1}$
2. Adding/ Subtracting Algebraic Fractions	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is bd $\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$	$=\frac{\frac{1}{x} + \frac{x}{2y}}{\frac{1(2y)}{2xy} + \frac{x(x)}{2xy}}$ $=\frac{\frac{2y + x^2}{2xy}}{\frac{2xy}{2xy}}$
3. Multiplying Algebraic Fractions	Multiply the numerators together and the denominators together. $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$\frac{x}{3} \times \frac{x+2}{x-2} = \frac{x(x+2)}{3(x-2)} = \frac{x^2+2x}{3x-6}$
4. Dividing Algebraic Fractions	Multiply the first fraction by the reciprocal of the second fraction. $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	$\frac{\frac{x}{3} \div \frac{2x}{7}}{= \frac{x}{3} \times \frac{7}{2x}}$ $= \frac{\frac{7x}{6x}}{= \frac{7}{6}}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors .	$\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{x + 3}{2}$

ी 👫 एक्ट्रा

Topic/Skill	Definition/Tips	Example	
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender	
Data	Quantitative Data – numerical data	etc.	
	Continuous Data – data that can take any numerical value within a given range. Discrete Data – data that can take only	Continuous Data – weight, voltage etc. Discrete Data – number of children,	
	specific values within a given range.	shoe size etc.	
2. Grouped	Data that has been bundled in to	Foot length, <i>l</i> , (cm) Number of children	
Data	categories.	$10 \leq l < 12$ 5	
	Seen in grouped frequency tables,	12 ≤ <i>l</i> < 17 53	
3 Primary	Primary Data – collected yourself for a	Primary Data – data collected by a	
/Secondary	specific purpose.	student for their own research project.	
Data	Secondary Data – collected by someone else for another purpose.	Secondary Data – Census data used to analyse link between education and	
		earnings.	
4. Mean	Add up the values and divide by how many values there are.	The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$	
5. Mean from a	1. Find the midpoints (if necessary)	Height in cm Frequency Midpoint $F \times M$	
Table	 2. Multiply Frequency by values or midpoints 2. Address three services 	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	3. Add up these values	Estimated Mean	
	4. Divide this total by the Total Frequency	height: $450 \div 24 =$	
	If grouped data is used, the answer will be	18.75cm	
6 Median	The middle value	Find the median of: 4523676	
Value	The mutule value.		
	Put the data in order and find the middle one.	Ordered: 2, 3, 4, 5 , 6, 6, 7	
	If there are two middle values , find the	Median = 5	
	number half way between them by adding them together and dividing by 2 .		
7. Median	Use the formula $\frac{(n+1)}{(n+1)}$ to find the position of	If the total frequency is 15, the median	
from a Table	the median.	will be the $\left(\frac{15+1}{2}\right) = 8th$ position	
	n is the total frequency.		
8. Mode	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4	
/Modal Value			
	Can have more than one mode (called bi-	Mode = 4	
	modal or multi-modal) or no mode (if all		
	values appear once)		
9. Range	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.	
	Range is a 'measure of spread'. The smaller	Range = 102-3 = 99	

	the range the more <u>consistent</u> the data.	
10. Outlier	A value that 'lies outside' most of the other	12 Outlier
	values in a set of data.	
	An outlier is much smaller or much	8
	larger than the other values in a set of data	4
	anger than the other values in a set of data.	2
		0
11 T		
11. Lower	Divides the bottom half of the data into	Find the lower quartile of: $2, \underline{3}, 4, 5, 6,$
Quartile	two halves.	6, 7
	$LQ = Q_1 = \frac{(n+1)}{4} th$ value	$Q_1 = \frac{(7+1)}{4} = 2nd$ value $\rightarrow 3$
12. Lower	Divides the top half of the data into two	Find the upper quartile of: $2, 3, 4, 5, 6$,
Quartile	halves.	6,7
	$UQ = Q_3 = \frac{3(n+1)}{4} th \text{ value}$	$Q_3 = \frac{3(7+1)}{4} = 6th$ value $\rightarrow 6$
13.	The difference between the upper quartile	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interguartile	and lower quartile.	
Range	1	$IOR = O_2 - O_4 = 6 - 3 = 3$
1	$IQR = Q_3 - Q_1$	
	The smaller the interquartile range, the	
	more consistent the data.	

Topic: Representing Data

1² 12

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHT 11	7
		2	1111	5
		3	111t I	6
		4	.µH	5
		5	111	3
		Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.		1 2 3 mber of pets o	4 wned
3. Types of	Compound/Composite Bar Charts show		Iron	
Bar Chart	data stacked on top of each other. Comparative/Dual Bar Charts show data side by side.	Weight (gm) 40 50 40 50 40 50 50 40 50 50 50 40 50 50 50 50 50 50 50 50 50 5	ainfáll Mar Apr May Mar Apr May Bar Chart	c Key: London Bristol
4. Pie Chart	Used for showing how data breaks down		Jash	
	 into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category. Remember to label the category that each 	If there are 40 per each person will	^{36°} Football 144° 80° Netball Netball	urvey, then 50÷40=9°
	sector in the pie chart represents.	of the pie chart.		

5. Pictogram	Uses pictures or symbols to show the value of the data.	Black 🛱 🛱 🖡	
	A pictogram must have a key.	Green \oint $= 4 \text{ cars}$ Others \bigcirc \bigcirc \bigcirc	
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data ,	14 12 10 8 6	
	which is a series of data points spaced over uniform time intervals in time order .		
7. Two Way Tables	A table that organises data around two categories.	Question: Complete the 2 way table below. Left Handed Right Handed Total Boys 10 58 Girls 58 Total 84 100	
	Fill out the information step by step using the information given.	Answer: Step 1, fill out the easy parts (the totals) Left Handed Right Handed Total Boys 10 48 58 Girls 42 Total 16 84	
	Make sure all the totals add up for all columns and rows.	Answer: Step 2, fill out the remaining parts Left Handed Right Handed Total Boys 10 48 58 Girls 6 36 42 Total 16 84 100	
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot.	Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper quartile is 17. Draw a	
	A box plot can be drawn independently or from a cumulative frequency diagram.	box plot to represent this information.	
9. Comparing Box Plots	 Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The smaller the range/IQR, the more consistent the data. 	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'	
	You must compare box plots in the context of the problem.		

Topic: Histograms and Cumulative Frequency

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example	
1. Histograms	A visual way to display frequency data using bars.	Frequency Density (FD)	
	Histograms show frequency density on the y-axis , not frequency.	(12) $8 \div 5 = 1.6$ $6 \div 20 = 0.3$ $15 \div 15 = 1$	
	$Frequency \ Density = \frac{Frequency}{Class \ Width}$	$13 \div 15 = 1$ $5 \div 25 = 0.2$	
	Height(cm) Frequency $0 < h \le 10$ 8 $10 < h \le 30$ 6 $30 < h \le 45$ 15		
2. Interpreting Histograms	$45 < h \le 70$ 5The area of the bar is proportional to the frequency of that class interval.	A histogram shows information about the heights of a number of plants. 4	
	Frequency = Freq Density × Class Width	plants were less than 5cm tall. Find the number of plants more than 5cm tall.	
		Above 5cm: $1.2 \times 10 + 2.4 \times 15 = 12 + 36 = 48$	
Frequency	AgeFrequency is a running total.AgeFrequency $0 < a \le 10$ 15 $10 < a \le 40$ 35 $40 < a \le 50$ 10	Cumulative Frequency 15 $15 + 35 = 50$ $50 + 10 = 60$	
4. Cumulative Frequency Diagram	A cumulative frequency diagram is a curve that goes up . It looks a little like a stretched-out S shape . Plot the cumulative frequencies at the end- point of each interval.	$\begin{array}{c} 40 \\ 30 \\ CF \\ 20 \\ 10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ Height \end{array}$	

5. Quartiles	Lower Quartile (Q1): 25% of the data is	40-	
from	less than the lower quartile.	Value of UQ taken from 33rd = 37	
Cumulative	Median (Q2): 50% of the data is less than	30 - Value of Medidan taken from 22pd = 30	
Frequency	the median.	20-	
Diagram	Upper Quartile (Q3): 75% of the data is less than the upper quartile.	10 - Value of LQ taken from 11th = 18	
	Interquartile Range (IQR): represents the		
	middle 50% of the data.	10 20 30 40 50	
		Height	
		IOR = 37 = 18 = 19	
6 Hypothesis	A statement that might be true, which	Hypothesis: 'Large dogs are better at	
0. Hypothesis	A statement that hight be true, which	astahing tennis halls then small dogo'	
	can be tested.	catching tennis balls than small dogs.	
		We can test this hypothesis by having	
		hundreds of different sized dogs try to	
		catch tennis balls.	

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	y $y = kx$
	If y is directly proportional to x, this can be written as $y \propto x$	x
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents	4
3. Using	Direct : $\mathbf{v} = \mathbf{k}\mathbf{x}$ or $\mathbf{v} \propto \mathbf{x}$	p is directly proportional to a.
proportionality	Direct. $y = h x$ of $y = x$	When $p = 12$, $q = 4$.
formulae	Inverse : $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	Find p when $q = 20$.
	1. Solve to find k using the pair of values in the question.	1. $p = kq$ 12 = k x 4 so k = 3
	2. Rewrite the equation using the k you have just found.	2. $p = 3q$
	3. Substitute the other given value from the question in to the equation to find the missing value.	3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct	Graphs showing direct proportion can be	Direct Proportion Graphs
Proportion with powers	written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	$y = 3x^{2}$ $y = 2x$ $y = 0.3x^{5}$
5. Inverse	Graphs showing inverse proportion can be	Inverse Proportion Graphs
Proportion with powers	written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	$y = \frac{3}{x^2}$

Tibshelf Community School

Topic: Circumference and Area

	143	
1 the		*
	YAY	
1	~S`	1
	×	

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant	F
	from a central point.	
	L L	
2. Parts of a	Radius – the distance from the centre of a	Parts of a Circle
Circle	circle to the edge	\bigcirc \bigcirc \bigcirc
	Diameter – the total distance across the	
	width of a circle through the centre.	\bigcirc \bigcirc \bigcirc
	Circumference – the total distance around	Radius Diameter Circumference
	the outside of a circle	$\bigcirc \bigcirc $
	Lie on a sirele	
	Tangent $-a$ straight line which touches a	
	circle at exactly one point	Chard Arc Tangent
	Arc – a part of the circumference of a	
	circle	
	Sector – the region of a circle enclosed by	
	two radii and their intercepted arc	\smile \bigcirc
	Segment – the region bounded by a chord	Segment Sector
	and the arc created by the chord	
3. Area of a	$A = \pi r^2$ which means 'pi x radius	If the radius was 5cm, then:
Circle	squared'.	$A = \pi \times 5^2 = 78.5 cm^2$
4.	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then:
Circumference		$C = \pi \times 10 = 31.4cm$
of a Circle		rS-VAR⊐ p rDISTR⊐ p r≥r/∂⊐ Pol(r
5. π ('p1')	Pi is the circumference of a circle divided	
	by the diameter.	
	$\pi \sim 3.14$	Ran# π DRG►
	$n \sim 5.14$	• EXP Ans
6. Arc Length	The arc length is part of the circumference.	Arc Length $-\frac{115}{2} \times \pi \times 8 - 8.03$ cm
of a Sector		$\frac{1}{360} \times \pi \times 0 = 0.05 \text{ cm}$
	Take the angle given as a fraction over	
	360° and multiply by the circumference .	O 4cm B
		115
7 Area of a	The area of a sector is part of the total area	
Sector		Area = $\frac{1}{360} \times \pi \times 4^2 = 16.1 cm^2$
	Take the angle given as a fraction over	
	360° and multiply by the area .	Acm B
	F F F F F F F F F F	Fiis