Topic: Compound Measures

Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	$1 \ centimetre = 10 \ millimetres$
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Length: mm, cm, m, km	
	Mass: mg, g, kg Volume: ml, cl, l	
2. Imperial	A system of weights and measures	$1lb = 16 \ ounces$
System	originally developed in England, usually	1 foot = 12 inches
	based on human quantities	$1 \ gallon = 8 \ pints$
	Length: inch, foot, yard, miles	
	Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	$5 \text{ miles} \approx 8 \text{ kilometres}$
Imperial Units	between metric and imperial units.	$1 \text{ gallon} \approx 4.5 \text{ litres}$
		$2.2 \text{ pounds} \approx 1 \text{ kilogram}$
		1 inch = 2.5 centimetres
4. Speed,	Speed = Distance ÷ Time	Speed = 4mph
Distance, Time	Distance = Speed x Time	Time = 2 hours
	Time = Distance ÷ Speed	
		Find the Distance.
	D S T	$D = S \times T = 4 \times 2 = 8$ miles
	Remember the correct units.	
5. Density,	Density = Mass ÷ Volume	Density = 8kg/m^3
Mass, Volume	Mass = Density x Volume	Mass = 2000g
,	Volume = Mass ÷ Density	6
		Find the Volume.
	D V	$V = M \div D = 2 \div 8 = 0.25m^3$
	Remember the correct units.	
6. Pressure,	Pressure = Force ÷ Area	Pressure = 10 Pascals
0. Tressure,	Force = Pressure x Area	$Area = 6cm^2$
Force, Area		Alca – Ochi-
,	Area = Force ÷ Pressure	Find the Force

	F p X A	$F = P \times A = 10 \times 6 = 60 N$
	Remember the correct units.	
7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)

্য 🏶 🔪 সন্থ্য

Topic:	Coordinates	and Linear	Graphs
---------------	-------------	------------	--------

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3) A: (4,7) B: (-6,-3) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2	Find the midpoint between (2,1) and (6,9)
	Method 2: Sketch the line and find the values half way between the two x and two	$\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ So, the midpoint is (4,5)
2 Linear	y values.	
3. Linear Graph	Straight line graph. The general equation of a linear graph is y = mx + c	Example: Other examples: x = y y = 4
	where <i>m</i> is the gradient and <i>c</i> is the y-intercept.The equation of a linear graph can contain	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	an x-term , a y-term and a number .	
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x + 3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form y = mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$ $x = \frac{3}{2}x + 1$ $x = \frac{3}{2}$
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the <i>x</i> term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the <i>y</i> term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	2x + 4y = 8

5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient =	
	Change in y Rise	Gradient = -3/1 =-3
	$\frac{dual g c u g}{Change in x} = \frac{duc}{Run}$	-3
	chunge in x Kun	2
	The gradient can be positive (sloping	1 1
	upwards) or negative (sloping downwards)	
6. Finding the	Substitute in the gradient (m) and point	Find the equation of the line with
Equation of a	(\mathbf{x}, \mathbf{y}) in to the equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$ and	gradient 4 passing through (2,7).
Line <u>given a</u>	solve for c.	
point and a		y = mx + c
gradient		$7 = 4 \times 2 + c$ $c = -1$
		c = -1
		y = 4x - 1
7. Finding the	Use the two points to calculate the	Find the equation of the line passing
Equation of a	gradient. Then repeat the method above	through (6,11) and (2,3)
Line given two	using the gradient and either of the points.	
<u>points</u>		$m = \frac{11-3}{6-2} = 2$
		$m = \frac{1}{6-2} = 2$
		$y = mx + c$ $11 = 2 \times 6 + c$
		$11 = 2 \times 6 + c$ $c = -1$
		c - 1
		y = 2x - 1
8. Parallel	If two lines are parallel , they will have the	y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 1$
Lines	same gradient. The value of m will be the	6x + 10 = 0 parallel?
	same for both lines.	
		Answer:
		Rearrange the second equation in to the form $y = mx + c$
		101111 y = mx + c
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3),
		the lines are parallel.
9.	If two lines are perpendicular , the	Find the equation of the line
Perpendicular	product of their gradients will always	perpendicular to $y = 3x + 2$ which
Lines	equal -1.	passes through (6,5)
	The gradient of one line will be the	Answer
	negative reciprocal of the gradient of the other line.	Answer: As they are perpendicular, the gradient
	outer inte.	
	You may need to rearrange equations of	of the new line will be $-\frac{1}{3}$ as this is the
	lines to compare gradients (they need to be	negative reciprocal of 3.
	in the form $y = mx + c$)	
		y = mx + c

17 🐝

-	-	-	1
4		12	
¥	ΞŤ.	1	
	r	Y	
	15	<u>، د</u>	J
	~		

	$5 = -\frac{1}{3} \times 6 + c$ $c = 7$
	$y = -\frac{1}{3}x + 7$ Or
	3x + x - 7 = 0

Topic: Ratio

57 S

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
2 Due no stien	Written using the ':' symbol.	In a share with 12 hours and 0 with the
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the 13
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5: 10 = 1: 2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5 \cdot 7 - 1 \cdot 7$ in the form $1 \cdot n$
form $1: n$ or	numbers to make one part equal 1.	$5:7 = 1:\frac{7}{5}$ in the form 1: n
n: 1		$5:7 = \frac{5}{7}:1$ in the form n : 1
7 01 · · ·		
5. Sharing in a Ratio	 Add the total parts of the ratio. Divide the amount to be shared by this 	Share $\pounds 60$ in the ratio $3:2:1$.
Kauo	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	3 x 10 = 30, 2 x 10 = 20, 1 x 10 = 10
		$\pounds 30: \pounds 20: \pounds 10$
	Use only if you know the total .	X 2
6. Proportional	Comparing two things using multiplicative	
Reasoning	reasoning and applying this to a new situation.	30 minutes 60 pages
	Situation.	? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	X 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$
		So 5 cakes = $750 g (x by 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had $\pounds 16$, found out the total
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
		$3 + 2 + 5 = 10$ parts, so $8 \times 10 = \text{\pounds}80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13) Pack of 13 cakes is best value.

Topic: Equations and Formulae

b find the answer /value of something be inverse operations on both sides of e equation (balancing method) until you ad the value for the letter. oposite be inverse operations on both sides of e formula (balancing method) until you	Solve $2x - 3 = 7$ Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction. The inverse of multiplication is division. Make x the subject of $y = \frac{2x-1}{z}$
e equation (balancing method) until you ad the value for the letter. pposite se inverse operations on both sides of e formula (balancing method) until you	2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction. The inverse of multiplication is division.
Se inverse operations on both sides of e formula (balancing method) until you	The inverse of multiplication is division.
e formula (balancing method) until you	Make x the subject of $y = \frac{2x-1}{z}$
d the expression for the letter.	Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
bstitute letters for words in the estion.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	lace letters with numbers.

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
		5 cm
	Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
	onto notado. nent yent ynt	
3. Area of a	Length x Width	9 cm
Rectangle		
		4 cm
		$A = 36cm^2$
4. Area of a	Base x Perpendicular Height	
Parallelogram	Not the slant height.	4cm 3cm
		$A = 21 cm^2$
5. Area of a	Base x Height ÷ 2	9
Triangle		4 5
		$A = 24cm^2$
6. Area of a	Split in to two triangles and use the	A A
Kite	method above.	2.2m
		← 8m
		$A = 8.8m^2$
7. Area of a	$\frac{(a+b)}{2} \times h$	<u>6 cm</u>
Trapezium	2	5 cm
	"Half the sum of the parallel side, times the	
	height between them. That is how you	$\xleftarrow{16 \text{ cm}} A = 55 cm^2$
	calculate the area of a trapezium"	
8. Compound	A shape made up of a combination of	
Shape	other known shapes put together.	
		- +
		+
		±

Topic: Properties of Polygons

	-		-
	A.L.	X	er le
		n an	
3		3	٠,
	-	-	

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	• Rotational symmetry of order four	
2. Rectangle	• Two pairs of equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	
	angles	
	• Two lines of symmetry	
2 D1 1	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	
	Diagonally opposite angles are equal	
	Opposite sides parallel Diagonals bisect each other at right	$\langle \rangle$
	• Diagonals bisect each other at right	\sim
	anglesTwo lines of symmetry	
	 Rotational symmetry of order two 	
4.	• Two pairs of equal sides	
 Parallelogram	 Diagonally opposite angles are equal 	
1 araneiogram	Opposite sides parallel	
	• Diagonals bisect each other, not at right	T T
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	
	length	\rightarrow
	• One pair of diagonally opposite angles	
	are equal (where different length sides	$\times \neq$
	meet)	
	• Diagonals intersect at right angles, but	\sim
	do not bisect	
	• One line of symmetry	
	No rotational symmetry	
6. Trapezium	• One pair of parallel sides	
	• No lines of symmetry	
	No rotational symmetry	
	Special Case: Isosceles Trapeziums have	· · · · · · · · · · · · · · · · · · ·
	one line of symmetry.	

Topic: Circumference and Area

1 - Va
χγ (
ş,)

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	e contraction of the second se
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{V} \mathbf{R} \mathbf{T} \mathbf{P} \mathbf{F} \mathbf{D} \mathbf{I} \mathbf{F} \mathbf{T} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360 ° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	1
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = πrl	//
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m)
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Basic Probability

ν³⁷ ₩ γα

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something	
	happening.	Impossible Unlikely Even Chance Likely Certain
	Is expressed as a number between 0	
	(impossible) and 1 (certain).	
	(impossible) and I (certain).	1-in-6 Chance 4-in-5 Chance
	Can be expressed as a fraction, decimal,	
	percentage or in words (likely, unlikely,	
	even chance etc.)	
2. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of cards.
3. Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-
Probability	Total Number of Possible Outcomes	sided die = $\frac{1}{c}$.
4. Relative	Number of Successful Trials	$\frac{6}{1000}$ A coin is flipped 50 times and lands on
Frequency	Total Number of Trials	Tails 29 times.
1 0		
		The relative frequency of getting Tails
		$=\frac{29}{50}$.
5. Expected	To find the number of expected outcomes,	The probability that a football team
Outcomes	multiply the probability by the number of	wins is 0.2 How many games would
	trials.	you expect them to win out of 40?
		$0.2 \times 40 = 8 games$
6. Exhaustive	Outcomes are exhaustive if they cover the	When rolling a six-sided die, the
	entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are
		exhaustive, because they cover all the
	The probabilities of an exhaustive set of	possible outcomes.
7. Mutually	outcomes adds up to 1.Events are mutually exclusive if they	Examples of mutually exclusive events:
Exclusive	cannot happen at the same time.	Examples of mutually exclusive events.
		- Turning left and right
	The probabilities of an exhaustive set of	- Heads and Tails on a coin
	mutually exclusive events adds up to 1.	
		Examples of non mutually exclusive
		events:
		- King and Hearts from a deck of cards,
		because you can pick the King of
		Hearts
8. Frequency	A diagram showing how information is	Wears glasses
Tree	categorised into various categories.	18 Does not
	The numbers at the ends of branches tells	Boll ⁵ Does not wear glasses
	us how often something happened	
	(frequency).	Sirry Wears glasses
		Drag
	The lines connected the numbers are called	Does not wear glasses

Tibshelf Community School

	branches.									
9. Sample	The set of all possible outcomes of an		+	1	2	3	4	5	6	
Space	experiment.		1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
			6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from a population.A sample is biased if individuals or groups from the population are not represented in	A samp from a						0	10 s	tudents
	the sample.									
11. Sample	The larger a sample size, the closer those	A samp					<u> </u>			
Size	probabilities will be to the true probability.	reliable	e res	sult	thar	n a s	sam	ple	size	of 10.

Topic: Probability (Trees and Venns)

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	1 .
Diagrams	probabilities.	- red
	probabilities.	1
		5 red 2 black
	All branches must add up to 1 when	- Olack
	adding downwards.	$\leq \frac{1}{2}$
	This is because the probability of	4 3 red
	something not happening is 1 minus the	5 black
	probability that it does happen.	2black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be replacing a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
Lvents	event.	picking it.
	event.	'Without replacement'
1 Drohobility	D(A) refers to the probability that event A	
4. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P (A ') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	$P(Blonde \cup Right Handed)$ refers to the
	event A <u>or</u> B <u>or</u> both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
	$P(A \cap B)$ refers to the probability that	P(Blonde \cap Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	
Diagrams	between a group of different things and	
Diugiumo	how they overlap.	
	now mey overlap.	
	You may be asked to shade Venn Diagrams	
	as shown below and to the right.	$(A \cap B)' \qquad \qquad (A \cup B)'$
	as shown below and to the right.	
	$A \cup B$ $A \cap B$	
	A $B \zeta$ A $B \zeta$	
	The Union The Intersection 'A or B or Both' 'A and B'	
L	11 000 M	<u> </u>

		$A \cap B$ $A \cap B$ $A \cap B'$ $A \cap B'$ B
6. Venn Diagram Notation	E means 'element of a set' (a value in the set) { } means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question)	Set A is the even numbers less than 10. $A = \{2, 4, 6, 8\}$ Set B is the prime numbers less than 10. $B = \{2, 3, 5, 7\}$
	 A' means 'not in set A' (called complement) A ∪ B means 'A or B or both' (called Union) A ∩ B means 'A and B (called Intersection) 	A \cup B = {2, 3, 4, 5, 6, 7, 8} A \cap B = {2}
7. AND rule for Probability	When two events, A and B, are independent :	What is the probability of rolling a 4 and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened. With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	1st Bead 1st Bead 2nd Bead 3 8 Red 5 9 Green 4 8 Red 4 8 Red 4 8 Green 4 8 Green 4 8 Green

Topic: Systematic Listing

Topic/Skill	Definition/Tips	Example
1.	A collection of things, where the order	How many combinations of two
Combination	does not matter.	ingredients can you make with apple,
		banana and cherry?
		Apple, Banana
		Apple, Cherry
		Banana, Cherry
		3 combinations
2. Permutation	A collection of things, where the order	You want to visit the homes of three
	does matter.	friends, Alex (A), Betty (B) and
		Chandra (C) but haven't decided the
		order. What choices do you have?
		ABC
		ACB
		BAC
		BCA CAB
		CAB
		CDA
3.	When something has n different types,	How many permutations are there for a
Permutations	there are <i>n</i> choices each time.	three-number combination lock?
with		
Repetition	Choosing r of something that has n	10 numbers to choose from $\{1, 2, \dots, 10\}$
-	different types, the permutations are:	and we choose 3 of them \rightarrow
		$10 \times 10 \times 10 = 10^3 = 1000$
	$n \times n \times \dots (r \ times) = \mathbf{n}^r$	permutations.
4.	We have to reduce the number of	How many ways can you order 4
Permutations	available choices each time.	numbered balls?
without		
Repetition	One you have chosen something, you	$4 \times 3 \times 2 \times 1 = 24$
5. Factorial	cannot choose it again.	$4! = 4 \times 3 \times 2 \times 1 = 24$
J. Factorial	The factorial symbol '!' means to multiply a series of descending integers to 1.	$4! = 4 \times 3 \times 2 \times 1 = 24$
	Note: $0! = 1$	
6. Product	If there are <i>x</i> ways of doing something and	To choose one of { <i>A</i> , <i>B</i> , <i>C</i> } and one of
Rule for	y ways of doing something else, then there	$\{X, Y\}$ means to choose one of
Counting	are xy ways of performing both.	$\{AX, AY, BX, BY, CX, CY\}$
C		(, , , , = , ,)
		The rule says that there are $3 \times 2 = 6$
		choices.

Topic: Properties of Polygons

	-		-
	A.L.	X	er le
		n an	
3		3	٠,
	-	-	

Topic/Skill	Definition/Tips	Example
1. Square	• Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	• Rotational symmetry of order four	
2. Rectangle	• Two pairs of equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	
	angles	
	• Two lines of symmetry	
2 D1 1	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	
	Diagonally opposite angles are equal	
	Opposite sides parallel Diagonals bisect each other at right	$\langle \rangle$
	• Diagonals bisect each other at right	\sim
	anglesTwo lines of symmetry	
	 Rotational symmetry of order two 	
4.	• Two pairs of equal sides	
 Parallelogram	 Diagonally opposite angles are equal 	
1 draheiogram	Opposite sides parallel	
	• Diagonals bisect each other, not at right	T T
	angles	
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	
	length	\rightarrow
	• One pair of diagonally opposite angles	
	are equal (where different length sides	$\times \neq$
	meet)	
	• Diagonals intersect at right angles, but	\sim
	do not bisect	
	• One line of symmetry	
	No rotational symmetry	
6. Trapezium	• One pair of parallel sides	
	• No lines of symmetry	
	No rotational symmetry	
	Special Case: Isosceles Trapeziums have	· · · · · · · · · · · · · · · · · · ·
	one line of symmetry.	

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point .	Rotate Shape A 90° anti-clockwise about (0,1)
	Use tracing paper.	X. Y.
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror .	Reflect shape C in the line $y = x$
	Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	6 B 6 C 7 A 7 A 7 A 7 A 7 A 7 A 7 A 7 A
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

Topic: Shape Transformations

े 👬 जहा

Tibshelf Community School

		<u> </u>
6. Finding the Centre of	Draw straight lines through corresponding corners of the two shapes.	1 17
Enlargement	The centre of enlargement is the point where all the lines cross over.	1111
	where an the lines cross over.	
	Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing	Give the following information when	- Translation, Vector
Transformatio ns	describing each transformation:	Rotation, Direction, Angle, CentreReflection, Equation of mirror line
115	Look at the number of marks in the	- Enlargement, Scale factor, Centre
	question for a hint of how many pieces of information are needed.	of enlargement
	If you are asked to describe a	
	'transformation', you need to say the name	
	of the type of transformation as well as the other details.	

Topic: Congruence and Similarity

୍ / 🏶 ଅକ୍ଟ

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size .	
Shupes	Sume shape and sume size.	
	Shapes can be rotated or reflected but still	
2 Conservant	be congruent.	ScmF
2. Congruent Triangles	4 ways of proving that two triangles are congruent:	A ST C D 73 61
Thungleb		73' 8cm
	1. SSS (Side, Side, Side)	$B \qquad \bigvee_{E}$
	2. RHS (Right angle, Hypotenuse, Side)	
	3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS	BC = DF
	4. ASA (Angle, Side, Angle) or AAS	$\angle ABC = \angle EDF$ $\angle ACB = \angle EFD$
	ASS does not prove congruency.	\therefore The two triangles are
2 6: 1		congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes .	
Shapes	shape but uniterent sizes.	
	The proportion of the matching sides must	
	be the same, meaning the ratios of	
	corresponding sides are all equal.	24
4. Scale Factor	The ratio of corresponding sides of two similar shapes.	16
	sinna shapes.	10 15
	To find a scale factor, divide a length on	
	one shape by the corresponding length on	
	a similar shape.	Scale Factor = $15 \div 10 = 1.5$
5. Finding	1. Find the scale factor.	2cm 3cm
missing longths in	2. Multiply or divide the corresponding side to find a missing length.	
lengths in similar shapes	side to find a missing lengui.	4.5cm
sinna snapes	If you are finding a missing length on the	xx
	larger shape you will need to multiply by	
	the scale factor.	
	If you are finding a missing length on the	
	smaller shape you will need to divide by	Scale Factor = $3 \div 2 = 1.5$
	the scale factor.	$x = 4.5 \times 1.5 = 6.75cm$
6. Similar	To show that two triangles are similar,	y 🔶
Triangles	show that:	85°
	1. The three sides are in the same	40°
	proportion	x z Y
	2. Two sides are in the same proportion,	
	and their included angle is the same	85°
	3. The three angles are equal	
		55°
1		X Z

Tibshelf Community School