Topic: Equations and Formulae

b find the answer /value of something be inverse operations on both sides of e equation (balancing method) until you ad the value for the letter. oposite be inverse operations on both sides of e formula (balancing method) until you	Solve $2x - 3 = 7$ Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction. The inverse of multiplication is division. Make x the subject of $y = \frac{2x-1}{z}$
e equation (balancing method) until you ad the value for the letter. pposite se inverse operations on both sides of e formula (balancing method) until you	2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction. The inverse of multiplication is division.
Se inverse operations on both sides of e formula (balancing method) until you	The inverse of multiplication is division.
e formula (balancing method) until you	Make x the subject of $y = \frac{2x-1}{z}$
d the expression for the letter.	Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
bstitute letters for words in the estion.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	lace letters with numbers.

Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not	7 ≠ 3
	equal.	
		$x \neq 0$
	$a \neq b$ means that a is not equal to b.	
2. Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or equal to	
	1	-1, 0, 1, 2, 3, 4
	$x \le 6$ means x is less than or equal to 6	
3. Inequalities	Inequalities can be shown on a number line.	
on a Number		-2 -1 0 1 2 3 $x \ge 0$
Line	Open circles are used for numbers that are	$\begin{array}{c} -2 & -1 & 0 & 1 & 2 & 3 \\ \hline \end{array} \\ \begin{array}{c} x \geq 0 \\ x \geq 0 \end{array}$
	less than or greater than $(< or >)$	←
		-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	Closed circles are used for numbers that	, — ——•• ,
	are less than or equal or greater than or	◆+ + + + + + + + + + + + + + + + + + +
	equal $(\leq or \geq)$	$-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ -5 \le x < 4$

Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous	involving two or more variables (letters).	3x - y = 8
Equations		
	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	<i>y</i> = 1
2. Variable	A symbol, usually a letter, which	In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
a a a t	unknown.	
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign	
	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy both of the original equations.	5
	both of the original equations.	$5x + 2 \times 2 = 9$
		5x + 4 = 9
		5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by	2. Substitute the right-hand side of the	
Substitution)	rearranged equation into the other equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	3. Expand and solve this equation.	
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	$x = \dots$ equation.	
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
		x = -1
		Substitute: $y = 2 \times -1 + 3$
		Substitute: $y = 2 \times -1 + 3$ y = 1
		y - 1
		Solution: $x = -1, y = 1$

6. Solving	Draw the graphs of the two equations.	
Simultaneous		y = 2x - 1
Equations	The solutions will be where the lines	
(Graphically)	meet.	y = 5 - x
	The solution can be written as a	
	coordinate.	
		y = 5 - x and $y = 2x - 1$.
		They meet at the point with coordinates
		(2,3) so the answer is $x = 2$ and $y = 3$
7. Solving	Method 1: If both equations are in the same	Example 1
Linear and	form (eg. Both $y =$):	Solve
Quadratic	1. Set the equations equal to each other.	$y = x^2 - 2x - 5$ and $y = x - 1$
Simultaneous	2. Rearrange to make the equation equal	
Equations	to zero.	$x^2 - 2x - 5 = x - 1$
•	3. Solve the quadratic equation.	$x^2 - 3x - 4 = 0$
	4. Substitute the values back in to one of	(x-4)(x+1) = 0
	the equations.	x = 4 and $x = -1$
	Method 2: If the equations are not in the	y = 4 - 1 = 3 and
	same form:	y = -1 - 1 = -2
	1. Rearrange the linear equation into the	<i>y</i>
	form $y = \dots$ or $x = \dots$	Answers: (4,3) and (-1,-2)
	2. Substitute in to the quadratic equation.	
	3. Rearrange to make the equation equal	Example 2
	to zero.	Solve $x^2 + y^2 = 5$ and $x + y = 3$
	4. Solve the quadratic equation.	
	5. Substitute the values back in to one of	x = 3 - y
	the equations.	$(3-y)^2 + y^2 = 5$
		$9 - 6y + y^2 + y^2 = 5$
	You should get two pairs of solutions (two	$2y^2 - 6y + 4 = 0$
	values for <i>x</i> , two values for <i>y</i> .)	$y^2 - 3y + 2 = 0$
		(y-1)(y-2) = 0
	Graphically, you should have two points of	y = 1 and $y = 2$
	intersection.	
		x = 3 - 1 = 2 and $x = 3 - 2 = 1$
		Answers: (2,1) and (1,2)

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	y = kx
	If y is directly proportional to x, this can be written as $y \propto x$	x
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases , the other decreases by the same percentage .	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	+
3. Using	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$	p is directly proportional to q.
proportionality formulae	Inverse : $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	When $p = 12$, $q = 4$. Find p when $q = 20$.
	1. Solve to find k using the pair of values in the question.	1. $p = kq$ 12 = k x 4
	2. Rewrite the equation using the k you have just found.	so $k = 3$
	3. Substitute the other given value from	2. $p = 3q$
	the question in to the equation to find the missing value .	3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs
5. Inverse	Graphs showing inverse proportion can be k	Inverse Proportion Graphs
Proportion with powers	written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	$y = \frac{3}{x^2}$

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
		5 cm
	Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	
		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
	onto notado. nent yent ynt	
3. Area of a	Length x Width	9 cm
Rectangle		
		4 cm
		$A = 36cm^2$
4. Area of a	Base x Perpendicular Height	
Parallelogram	Not the slant height.	4cm 3cm
		$A = 21 cm^2$
5. Area of a	Base x Height ÷ 2	9
Triangle		4 5
		$A = 24cm^2$
6. Area of a	Split in to two triangles and use the	A A
Kite	method above.	2.2m
		← 8m → →
		$A = 8.8m^2$
7. Area of a	$\frac{(a+b)}{2} \times h$	<u>6 cm</u>
Trapezium	2	5 cm
	"Half the sum of the parallel side, times the	
	height between them. That is how you	$\xleftarrow{16 \text{ cm}} A = 55 cm^2$
	calculate the area of a trapezium"	
8. Compound	A shape made up of a combination of	
Shape	other known shapes put together.	
		- +
		+
		±

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras' Theorem	For any right angled triangle : $a^2 + b^2 = c^2$	Finding a Shorter Side
	a	SUBTRACT! 8 a = y, b = 8, c = 10 $a^2 = c^2 - b^2$
	<i>b</i> Used to find missing lengths . a and b are the shorter sides, c is the hypotenuse (longest side).	$u^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$ $y = 6$
2. 3D Pythagoras' Theorem	Find missing lengths by identifying right angled triangles. You will often have to find a missing length you are not asked for before finding the missing length you are asked for.	Can a pencil that is 20cm long fit in a pencil tin with dimensions 12cm, 13cm and 9cm? The pencil tin is in the shape of a cuboid. Hypotenuse of the base = $\sqrt{12^2 + 13^2} = 17.7$
		Diagonal of cuboid = $\sqrt{17.7^2 + 9^2}$ = 19.8 <i>cm</i> No, the pencil cannot fit.

Topic: Circumference and Area

1 - Va
χγ (
ş,)

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	e contraction of the second se
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{V} \mathbf{R} \mathbf{T} \mathbf{P} \mathbf{F} \mathbf{D} \mathbf{I} \mathbf{F} \mathbf{T} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} F$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360 ° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	1
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = πrl	//
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m)
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Volume

Definition/Tins	Example
Units: mm^3 , cm^3 , m^3 etc.	
$V = Length \times Width \times Height$	1
$V = L \times W \times H$	6cm
	\uparrow
	3 cm
Tormula for a cube/cuboid.	*
	5cm
	volume = $6 \times 5 \times 3$ = 90 cm^3
A prism is a 3D shape whose cross section	\bigwedge
is the same throughout.	
	Rectangle Prism Cube
	Triangle Prism
	And the second s
	Pentagonal Prism Hexagonal Prism
continues all the way through the prism.	Cross Section
$V = Area of Cross Section \times Length$	
	Area of
	Cross Section
	Length
$V = \pi r^2 h$	
	5cm
	2cm
	$V = \pi(4)(5)$ = 62.8cm ³
1	
I _	
$V = \frac{1}{3}\pi r^2 h$	
$V=\frac{1}{3}\pi r^2h$	2 cm 5cm
$V=\frac{1}{3}\pi r^2h$	_2 <i>cm</i>
$V=\frac{1}{3}\pi r^2h$	
	You can also use the Volume of a Prism formula for a cube/cuboid. A prism is a 3D shape whose cross section is the same throughout. The cross section is the shape that continues all the way through the prism . $V = Area of Cross Section \times Length$ $V = A \times L$

	1	
8. Volume of a	$V_{olumo} = \frac{1}{Ph}$	
Pyramid	$Volume = \frac{1}{3}Bh$	
	where $B = area$ of the base	7em
		6cm 6cm
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^3$
		$V = \frac{1}{3} \times 0 \times 0 \times 7 = 04$ cm
9. Volume of a	4 <u></u> 3	Find the volume of a sphere with
Sphere	$V = \frac{4}{3}\pi r^3$	diameter 10cm.
-		
	Look out for hemispheres – just halve the	$4 500\pi$
	volume of a sphere.	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
	· · · · · · · · · · · · · · · · · · ·	5 5
10. Frustums	A frustum is a solid (usually a cone or	
	pyramid) with the top removed .	
	pyramia) with the top removed.	
	Find the volume of the whole shape then	24cm 5cm
	Find the volume of the whole shape, then	
	take away the volume of the small	$(10 \text{ m})^{+}$
	cone/pyramid removed at the top.	
		Volume = ?
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$
		$3^{n(10)(24)} 3^{n(3)(12)}$
		$= 700\pi cm^3$

Topic: Sequences

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	
		Sequence is: 2, 5, 8, 11
4. nth term	A rule which allows you to calculate the	nth term is $3n - 1$
	term that is in the nth position of the	44
	sequence.	The 100^{th} term is $3 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	n refers to the position of a term in a sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4 <i>n</i>
	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
		to get 3.
		nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type
		sequence is:
		4, 7, 11, 18, 29
7. Geometric	A sequence of numbers where each term is	An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
1	a number called the common ratio, r .	The common ratio is 5
		Another example of a geometric
		sequence is:
		81, -27, 9, -3, 1
		The common ratio is $-\frac{1}{3}$
8. Quadratic	A sequence of numbers where the second	
Sequence	difference is constant.	+4 +6 +8 +10 +12
(Extension)		+2 +2 +2 +2
	A quadratic sequence will have a n^2 term.	
9. nth term of a	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
(Extension)	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	

	corresponding terms in the sequence from the question.5. Find the nth term of this set of numbers.6. Combine the nth terms to find the overall nth term of the quadratic sequence.Substitute values in to check your nth term works for the sequence.	Sequence: 4, 7, 14, 25, 40 $2n^2$ 2, 8, 18, 32, 50 Difference: 2, -1, -4, -7, -10 Nth term of this set of numbers is -3n + 5 Overall nth term: $2n^2 - 3n + 5$
10. Triangular numbers	The sequence which comes from a pattern of dots that form a triangle. 1, 3, 6, 10, 15, 21	

Topic:	Coordinates	and Linear	Graphs
---------------	-------------	------------	--------

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3) A: (4,7) B: (-6,-3) B: (-6,-3)
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2	Find the midpoint between (2,1) and (6,9)
	Method 2: Sketch the line and find the values half way between the two x and two	$\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$ So, the midpoint is (4,5)
2 Linear	y values.	
3. Linear Graph	Straight line graph. The general equation of a linear graph is y = mx + c	Example: Other examples: x = y y = 4
	where <i>m</i> is the gradient and <i>c</i> is the y-intercept.The equation of a linear graph can contain	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	an x-term , a y-term and a number .	
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x + 3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form y = mx + c) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$ $x = \frac{3}{2}$
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the <i>x</i> term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the <i>y</i> term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	2x + 4y = 8

5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient =	
	Change in y Rise	Gradient = -3/1 =-3
	$\frac{dual g c u g}{Change in x} = \frac{duc}{Run}$	-3
	chunge in x Kun	2
	The gradient can be positive (sloping	1
	upwards) or negative (sloping downwards)	
6. Finding the	Substitute in the gradient (m) and point	Find the equation of the line with
Equation of a	(\mathbf{x}, \mathbf{y}) in to the equation $\mathbf{y} = \mathbf{m}\mathbf{x} + \mathbf{c}$ and	gradient 4 passing through (2,7).
Line <u>given a</u>	solve for c.	
point and a		y = mx + c
gradient		$7 = 4 \times 2 + c$ $c = -1$
		c = -1
		y = 4x - 1
7. Finding the	Use the two points to calculate the	Find the equation of the line passing
Equation of a	gradient. Then repeat the method above	through (6,11) and (2,3)
Line given two	using the gradient and either of the points.	
<u>points</u>		$m = \frac{11-3}{6-2} = 2$
		$m = \frac{1}{6-2} = 2$
		$y = mx + c$ $11 = 2 \times 6 + c$
		$11 = 2 \times 6 + c$ $c = -1$
		c - 1
		y = 2x - 1
8. Parallel	If two lines are parallel , they will have the	y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 1$
Lines	same gradient. The value of m will be the	6x + 10 = 0 parallel?
	same for both lines.	
		Answer:
		Rearrange the second equation in to the form $y = mx + c$
		101111 y = mx + c
		$2y - 6x + 10 = 0 \rightarrow y = 3x - 5$
		Since the two gradients are equal (3),
		the lines are parallel.
9.	If two lines are perpendicular , the	Find the equation of the line
Perpendicular	product of their gradients will always	perpendicular to $y = 3x + 2$ which
Lines	equal -1.	passes through (6,5)
	The gradient of one line will be the	Answer
	negative reciprocal of the gradient of the other line.	Answer: As they are perpendicular, the gradient
	outer inte.	
	You may need to rearrange equations of	of the new line will be $-\frac{1}{3}$ as this is the
	lines to compare gradients (they need to be	negative reciprocal of 3.
	in the form $y = mx + c$)	
		y = mx + c

17 🐝

-	-	-	1
4		12	
¥	ΞŤ.	1	
	r	Y	
	15	<u>، د</u>	J
	~		

	$5 = -\frac{1}{3} \times 6 + c$ $c = 7$
	$y = -\frac{1}{3}x + 7$ Or
	3x + x - 7 = 0

Topic: Basic Probability

ν³⁷ ₩ γα

Topic/Skill	Definition/Tips	Example				
1. Probability	The likelihood/chance of something					
	happening.	Impossible Unlikely Even Chance Likely Certain				
	Is expressed as a number between 0					
	(impossible) and 1 (certain).					
	(impossible) and I (certain).	1-in-6 Chance 4-in-5 Chance				
	Can be expressed as a fraction, decimal,					
	percentage or in words (likely, unlikely,					
	even chance etc.)					
2. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability				
Notation	will occur.	of picking a Red Queen from a pack of cards.				
3. Theoretical	Number of Favourable Outcomes	Probability of rolling a 4 on a fair 6-				
Probability	Total Number of Possible Outcomes	sided die = $\frac{1}{c}$.				
4. Relative	Number of Successful Trials	$\frac{6}{1000}$ A coin is flipped 50 times and lands on				
Frequency	Total Number of Trials	Tails 29 times.				
1 0						
		The relative frequency of getting Tails				
		$=\frac{29}{50}$.				
5. Expected	To find the number of expected outcomes,	The probability that a football team				
Outcomes	multiply the probability by the number of	wins is 0.2 How many games would				
	trials.	you expect them to win out of 40?				
		$0.2 \times 40 = 8 games$				
6. Exhaustive	Outcomes are exhaustive if they cover the	When rolling a six-sided die, the				
	entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are				
		exhaustive, because they cover all the				
	The probabilities of an exhaustive set of	possible outcomes.				
7. Mutually	outcomes adds up to 1.Events are mutually exclusive if they	Examples of mutually exclusive events:				
Exclusive	cannot happen at the same time.	Examples of mutually exclusive events.				
		- Turning left and right				
	The probabilities of an exhaustive set of	- Heads and Tails on a coin				
	mutually exclusive events adds up to 1.					
		Examples of non mutually exclusive				
		events:				
		- King and Hearts from a deck of cards,				
		because you can pick the King of				
		Hearts				
8. Frequency	A diagram showing how information is	Wears glasses				
Tree	categorised into various categories.	18 Does not				
	The numbers at the ends of branches tells	Boll ⁵ Does not wear glasses				
	us how often something happened					
	(frequency).	Sirry Wears glasses				
		Drag				
	The lines connected the numbers are called	Does not wear glasses				

	branches.									
9. Sample	The set of all possible outcomes of an		+	1	2	3	4	5	6	
Space	experiment.		1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
			6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from a population.A sample is biased if individuals or groups from the population are not represented in	A samp from a						0	10 s	tudents
	the sample.									
11. Sample	The larger a sample size, the closer those	A samp					<u> </u>			
Size	probabilities will be to the true probability.	reliable	e res	sult	thar	n a s	sam	ple	size	of 10.

Topic: Systematic Listing

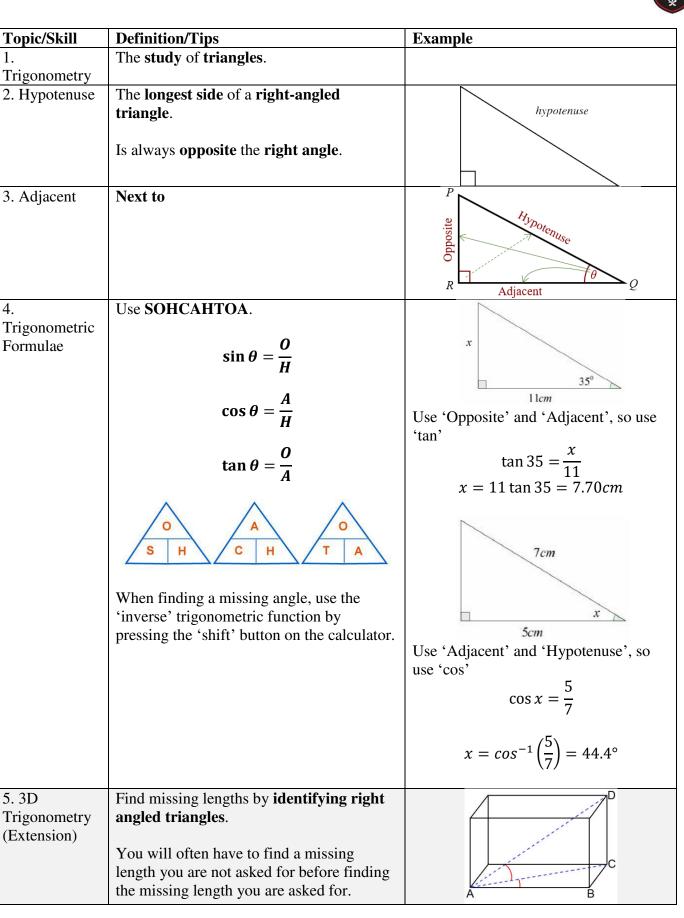
Topic/Skill	Definition/Tips	Example
1.	A collection of things, where the order	How many combinations of two
Combination	does not matter.	ingredients can you make with apple,
		banana and cherry?
		Apple, Banana
		Apple, Cherry
		Banana, Cherry
		3 combinations
2. Permutation	A collection of things, where the order	You want to visit the homes of three f_{i} and h_{i} and h_{i}
	does matter.	friends, Alex (A), Betty (B) and
		Chandra (C) but haven't decided the
		order. What choices do you have?
		ABC
		ACB
		BAC
		BCA
		CAB
		CBA
		CDA
3.	When something has n different types,	How many permutations are there for a
Permutations	there are <i>n</i> choices each time.	three-number combination lock?
with		
Repetition	Choosing r of something that has n	10 numbers to choose from $\{1, 2, \dots, 10\}$
1	different types, the permutations are:	and we choose 3 of them \rightarrow
		$10 \times 10 \times 10 = 10^3 = 1000$
	$n \times n \times (r \ times) = \mathbf{n}^r$	permutations.
4.	We have to reduce the number of	How many ways can you order 4
Permutations	available choices each time.	numbered balls?
without		
Repetition	One you have chosen something, you	$4 \times 3 \times 2 \times 1 = 24$
	cannot choose it again.	
5. Product	If there are <i>x</i> ways of doing something and	To choose one of $\{A, B, C\}$ and one of
Rule for	y ways of doing something else, then there	$\{X, Y\}$ means to choose one of
Counting	are <i>xy</i> ways of performing both.	$\{AX, AY, BX, BY, CX, CY\}$
		The rule says that there are $3 \times 2 = 6$
		choices.

Topic: Probability (Trees and Venns)

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{-}$ red
U	probabilities.	1 3
	L	1 red
	All branches must add up to 1 when	5 2 black
	adding downwards.	3 1
	This is because the probability of	1 1
	· · ·	4 Jolack 3 red
	something not happening is 1 minus the	5 black
	probability that it does happen.	= black
		3
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		' <u>Without replacement</u> '
4. Probability	P (A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
INOLALIOII	will occur.	
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	$P(Blonde \cup Right Handed)$ refers to the
	event A <u>or</u> B <u>or</u> both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
	$P(A \cap B)$ refers to the probability that	P(Blonde \cap Right Handed) refers to the
	both events A and B will occur.	probability that you pick someone who
		is both Blonde and Right Handed.
5. AND rule	When two events, A and B, are	What is the probability of rolling a 4
for Probability	independent:	and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 and Tails) = P(4) \times P(Tails)$
	$I(I u u u D) = I(I) \land I(D)$	$1 \ 1 \ 1 \ 1$
		$= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
6. OR rule for	When two events, A and B, are mutually	What is the probability of rolling a 2 or
Probability	exclusive:	rolling a 5?
Tiobability		
	$\mathbf{D}(\mathbf{A} \rightarrow \mathbf{D}) = \mathbf{D}(\mathbf{A}) + \mathbf{D}(\mathbf{D})$	
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$

7. Conditional	The probability of an event A happening,	1 st Bead	2 nd Bead
Probability	given that event B has already happened. With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	4 9 Red 5 9 Green	3/8 Red 5/8 Green 4/8 Red 4/8 Green


Topic: Congruence and Similarity

/ **भ** ्रह्य

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size .	
Shupes	sume shape and sume size.	
	Shapes can be rotated or reflected but still	
2 Conservant	be congruent.	ScmF
2. Congruent Triangles	4 ways of proving that two triangles are congruent:	A ST C D 73 61
Thungleb		73' 8cm
	1. SSS (Side, Side, Side)	$B \qquad \bigvee_{E}$
	2. RHS (Right angle, Hypotenuse, Side)	
	3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS	BC = DF
	4. ASA (Angle, Side, Angle) or AAS	$\angle ABC = \angle EDF$ $\angle ACB = \angle EFD$
	ASS does not prove congruency.	\therefore The two triangles are
2 6: 1		congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes .	
Shapes	shape but uniterent sizes.	
	The proportion of the matching sides must	
	be the same, meaning the ratios of	
	corresponding sides are all equal.	24
4. Scale Factor	The ratio of corresponding sides of two similar shapes.	16
	sinna shapes.	10 15
	To find a scale factor, divide a length on	
	one shape by the corresponding length on	
	a similar shape.	Scale Factor = $15 \div 10 = 1.5$
5. Finding	1. Find the scale factor.	2cm 3cm
missing longths in	2. Multiply or divide the corresponding side to find a missing length.	
lengths in similar shapes	side to find a missing lengui.	4.5cm
sinna snapes	If you are finding a missing length on the	xx
	larger shape you will need to multiply by	
	the scale factor.	
	If you are finding a missing length on the	
	smaller shape you will need to divide by	Scale Factor = $3 \div 2 = 1.5$
	the scale factor.	$x = 4.5 \times 1.5 = 6.75cm$
6. Similar	To show that two triangles are similar,	y 🔪
Triangles	show that:	85°
	1. The three sides are in the same	40°
	proportion	x z Y
	2. Two sides are in the same proportion,	
	and their included angle is the same	85°
	3. The three angles are equal	
		55°
1		X Z

Topic: Right Angled Trigonometry

