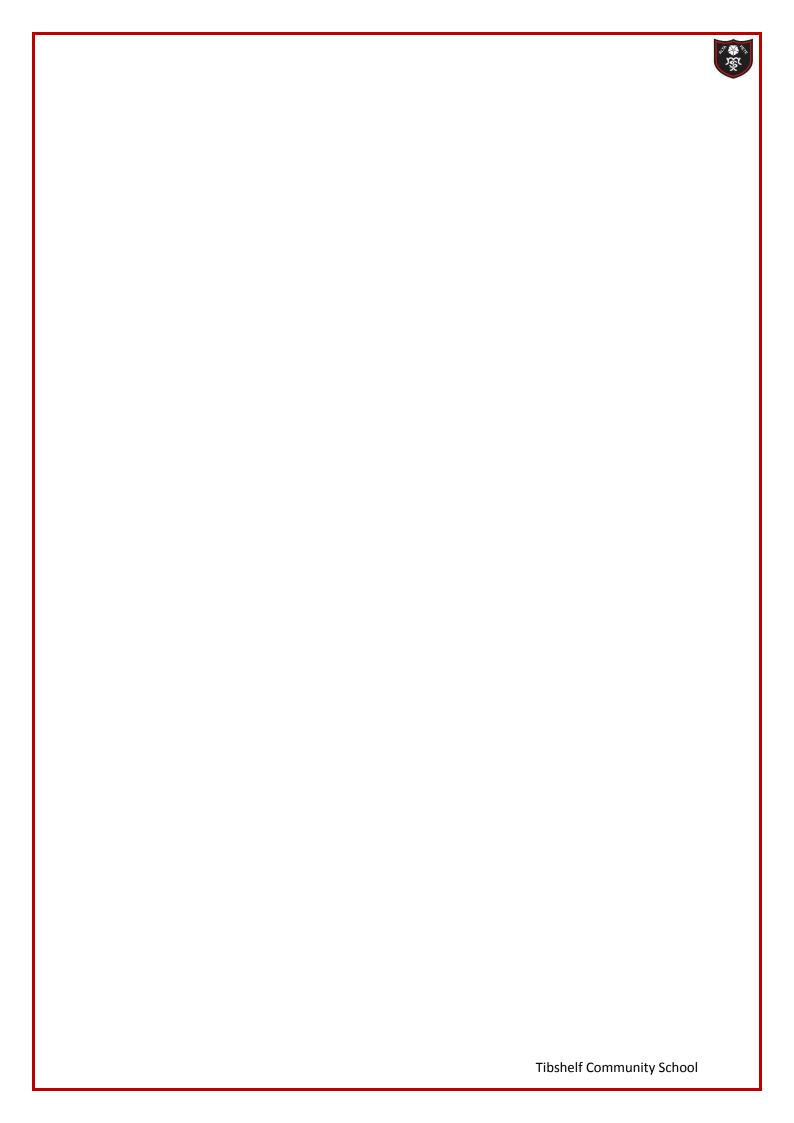


Topic/Skill	Definition/Tips	Example
1. Fraction	A mathematical expression representing the division of one integer by another.	$\frac{2}{7}$ is a 'proper' fraction.
	Fractions are written as two numbers separated by a horizontal line.	$\frac{9}{4}$ is an 'improper' or 'top-heavy' fraction.
2. Numerator	The top number of a fraction.	In the fraction $\frac{3}{5}$, 3 is the numerator.
3. Denominator	The bottom number of a fraction.	In the fraction $\frac{3}{5}$, 5 is the denominator.
4. Unit Fraction	A fraction where the numerator is one and the denominator is a positive integer.	$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ etc. are examples of unit fractions.
5. Reciprocal	The reciprocal of a number is 1 divided by the number.	The reciprocal of 5 is $\frac{1}{5}$
	The reciprocal of x is $\frac{1}{x}$	The reciprocal of $\frac{2}{3}$ is $\frac{3}{2}$, because
	When we multiply a number by its reciprocal we get 1. This is called the 'multiplicative inverse'.	$\frac{2}{3} \times \frac{3}{2} = 1$
6. Mixed Number	A number formed of both an integer part and a fraction part.	$3\frac{2}{5}$ is an example of a mixed number.
7. Simplifying Fractions	Divide the numerator and denominator by the highest common factor.	$\frac{20}{45} = \frac{4}{9}$
8. Equivalent Fractions	Fractions which represent the same value.	$\frac{2}{5} = \frac{4}{10} = \frac{20}{50} = \frac{60}{150} etc.$
9. Comparing Fractions	To compare fractions, they each need to be rewritten so that they have a common	Put in to ascending order: $\frac{3}{4}$, $\frac{2}{3}$, $\frac{5}{6}$, $\frac{1}{2}$.
	denominator. Ascending means smallest to biggest.	Equivalent: $\frac{9}{12}$, $\frac{8}{12}$, $\frac{10}{12}$, $\frac{6}{12}$
	Descending means biggest to smallest.	Correct order: $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{5}{6}$
10. Fraction of an Amount	Divide by the bottom , times by the top	Find $\frac{2}{5}$ of £60 $60 \div 5 = 12$ $12 \times 2 = 24$
11. Adding or Subtracting Fractions	Find the LCM of the denominators to find a common denominator. Use equivalent fractions to change each fraction to the common denominator .	$12 \times 2 = 24$ $\frac{2}{3} + \frac{4}{5}$ Multiples of 3: 3, 6, 9, 12, 15 Multiples of 5: 5, 10, 15 LCM of 3 and 5 = 15

	Then just add or subtract the numerators and keep the denominator the same.	$\frac{\frac{2}{3} = \frac{10}{15}}{\frac{4}{5} = \frac{12}{15}}$ $\frac{\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}}{\frac{7}{15}}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing Fractions	'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second fraction.	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$

Topic: Basic Percentages

Topic/Skill	Definition/Tips	Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding 10%	To find 10%, divide by 10	$10\% \text{ of } £36 = 36 \div 10 = £3.60$
3. Finding 1%	To find 1%, divide by 100	$1\% \text{ of } £8 = 8 \div 100 = £0.08$
4. Percentage Change	$rac{Difference}{Original} imes 100\%$	A games console is bought for £200 and sold for £250. % change = $\frac{50}{200} \times 100 = 25\%$
5. Fractions to Decimals	Divide the numerator by the denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
6. Decimals to Fractions	Write as a fraction over 10, 100 or 1000 and simplify.	$0.36 = \frac{36}{100} = \frac{9}{25}$
7. Percentages to Decimals	Divide by 100	$8\% = 8 \div 100 = 0.08$
8. Decimals to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
9. Fractions to Percentages	Percentage is just a fraction out of 100. Make the denominator 100 using equivalent fractions. When the denominator doesn't go in to 100, use a calculator and multiply the fraction by 100.	$\frac{3}{25} = \frac{12}{100} = 12\%$ $\frac{9}{17} \times 100 = 52.9\%$
10. Percentages to Fractions	Percentage is just a fraction out of 100. Write the percentage over 100 and simplify.	$14\% = \frac{14}{100} = \frac{7}{50}$


Topic: Calculating with Percentages

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of 500 = 50
Percentage	amount.	so 20% of $500 = 100$
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \times 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	1000/ 100/ 000/
		100% - 10% = 90%
	Look out for words like 'before' or	2007
	'original'	90% = £48.60
		1% = £0.54
4 0' 1	T 1 1 . 1	100% = £54
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		100/ 25 01000 - 0100
		10% of £1000 = £100
		Leterant - 2 × C100
		$Interest = 3 \times £100 = £300$

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
	Weitten vaine the 'c' armshall	
2. Proportion	Written using the ':' symbol. Proportion compares the size of one part to	In a class with 13 boys and 9 girls, the
2. I Toportion	the size of the whole .	
	110 51 <u>10</u> 51 110 11 11010	proportion of boys is $\frac{13}{22}$ and the
	Usually written as a fraction.	proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10=1:2 (divide both by 5)
Ratios	factor.	14:21=2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5:7=1:\frac{7}{5}$ in the form $1:n$
form $1:n$ or	numbers to make one part equal 1.	_ 3
n: 1		$5:7=\frac{5}{7}:1$ in the form $n:1$
5 Charina in	1 Add the total name of the met.	Share £60 in the ratio 3 : 2 : 1.
5. Sharing in a Ratio	 Add the total parts of the ratio. Divide the amount to be shared by this 	Share £60 in the ratio 3 : 2 : 1.
Katio	value to find the value of one part.	3+2+1=6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	$3 \times 10 = 30, 2 \times 10 = 20, 1 \times 10 = 10$
		£30 : £20 : £10
6 Duamantianal	Use only if you know the total.	X 2
6. Proportional Reasoning	Comparing two things using multiplicative reasoning and applying this to a new	
Reasoning	situation.	30 minutes 60 pages
		? minutes 150 pages
	Identify one multiplicative link and use this	
7 11:4	to find missing quantities.	X 2
7. Unitary Method	Finding the value of a single unit and then finding the necessary value by multiplying	3 cakes require 450g of sugar to make. Find how much sugar is needed to
Wicthod	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (÷ by 3)$
8. Ratio	Find what and name of the matic is wouth	So 5 cakes = 750 g (x by 5) Money was shared in the ratio 3:2:5
already shared	Find what one part of the ratio is worth using the unitary method .	Money was shared in the ratio 3:2:5 between Ann, Bob and Cat. Given that
anoug snared	asing the unitary method.	Bob had £16, found out the total
		amount of money shared.
		016 2
		£16 = 2 parts $50.68 = 1.part$
		So £8 = 1 part 3 + 2 + 5 = 10 parts, so 8 x 10 = £80
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for £1.28 \rightarrow 16p each (÷by 8)
2.22.24,0	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13)
		Pack of 13 cakes is best value.

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	$y \uparrow $ $y = kx$
	If y is directly proportional to x, this can be written as $y \propto x$	* X
	An equation of the form $y = kx$ represents direct proportion, where k is the constant of proportionality.	/ ↓
2. Inverse Proportion	If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	*
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	+
3. Using	Direct: $y = kx$ or $y \propto x$	p is directly proportional to q.
proportionality		When $p = 12$, $q = 4$.
formulae	Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$	Find p when $q = 20$.
	 Solve to find k using the pair of values in the question. Rewrite the equation using the k you 	1. $p = kq$ 12 = $k \times 4$ so $k = 3$
	have just found. 3. Substitute the other given value from the	2. $p = 3q$
	question in to the equation to find the missing value.	3. $p = 3 \times 20 = 60$, so $p = 60$
4. Direct	Graphs showing direct proportion can be	Direct Proportion Graphs
Proportion with powers	written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	$y = 3x^{2}$ $y = 2x$ $y = 0.5x^{5}$
5. Inverse	Graphs showing inverse proportion can be	Inverse Proportion Graphs
Proportion with powers	written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	$y = \frac{2}{x}$ $y = \frac{3}{x^2}$ $y = \frac{3}{x^2}$ $y = \frac{0.5}{x^5}$

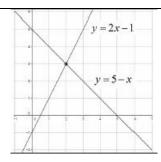
Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	1	x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a , b and c are numbers, $a \neq 0$	Examples of non-quadratic
		expressions:
		$2x^3 - 5x^2$
		9x - 1
2. Factorising	When a quadratic expression is in the form	$9x - 1$ $x^2 + 7x + 10 = (x + 5)(x + 2)$
Quadratics	$x^2 + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		$x^2 + 2x - 8 = (x+4)(x-2)$
		(because +4 and -2 add to give +2
		and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x+5)(x-5)$
of Two	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares	_	
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a	$x = \pm 7$
	negative solution.	
5. Solving	Factorise and then solve $= 0$.	$x^2 - 3x = 0$
Quadratics		x(x-3)=0
$(ax^2 + bx =$		x = 0 or x = 3
(C)	E-4-2-4 de martin in the martin in	C.1. 2 . 2 . 10 . 0
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	$Solve x^2 + 3x - 10 = 0$
Factorising	Solve – 0	Factorise: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation = 0 before	x = -5 or x = 2
(u-1)	factorising.	$\chi = -3 \text{ or } \chi = 2$
7. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics	$ax^2 + bx + c$	
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give +5
	multiply to give ac.	and multiply to give -24 are +8 and -
	3. Re-write the quadratic, replacing bx with	3
	the two numbers you found.	$3.6x^2 + 8x - 3x - 4$
	4. Factorise in pairs – you should get the	4. Factorise in pairs:
	same bracket twice	2x(3x+4)-1(3x+4)
	5. Write your two brackets – one will be the	5. Answer = $(3x + 4)(2x - 1)$
	repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
8. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation = 0 before	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
	factorising.	$\frac{x-2}{2}$

9. Completing	A quadratic in the form $x^2 + bx + c$ can be	Complete the square of
the Square	written in the form $(x+p)^2+q$	$y = x^2 - 6x + 2$
(when $a = 1$)		Answer:
	1. Write a set of brackets with x in and half	$(x-3)^2-3^2+2$
	the value of b.	$=(x-3)^2-7$
	2. Square the bracket. $(h)^2$	$= (x - 3)^{2} - 7$
	3. Subtract $\left(\frac{b}{2}\right)^2$ and add c .	The minimum value of this
	4. Simplify the expression.	expression occurs when $(x-3)^2 =$
		0, which occurs when $x = 3$
	You can use the completing the square	When $x = 3$, $y = 0 - 7 = -7$
	form to help find the maximum or minimum of quadratic graph.) (C) (C) (T)
10.	A quadratic in the form $ax^2 + bx + c$ can	Minimum point = $(3, -7)$
Completing	be written in the form $p(x+q)^2 + r$	Complete the square of $4x^2 + 8x - 3$
the Square	be written in the form $\mathbf{p}(\mathbf{x} + \mathbf{q}) + \mathbf{r}$	Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2 + 2x] - 3$
	factorise out a at the start.	$= 4[(x+1)^2 - 1^2] - 3$
		$=4(x+1)^2-4-3$
11 0 1 :		$=4(x+1)^2-7$
11. Solving Quadratics by	Complete the square in the usual way and use inverse operations to solve.	Solve $x^2 + 8x + 1 = 0$
Completing	use inverse operations to solve.	Answer:
the Square		$(x+4)^2 - 4^2 + 1 = 0$
		$(x+4)^2 - 15 = 0$
		$(x+4)^2 = 15$
		$(x+4) = \pm \sqrt{15}$
		$x = -4 \pm \sqrt{15}$
12. Solving	A quadratic in the form $ax^2 + bx + c = 0$	$Solve 3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	
using the Quadratic	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{}$	Answer: $a = 3, b = 1, c = -5$
Formula	Liga the formula if the guadratic does not	u-3, b-1, c-3
	Use the formula if the quadratic does not factorise easily.	$-1 + \sqrt{1^2 - 4 \times 3 \times -5}$
	Tuevorise custry.	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$
		2 / 3
		$x = \frac{-1 \pm \sqrt{61}}{6}$
		$x \equiv {6}$
		w = 1.14 on = 1.47 (2.4 m)
		$x = 1.14 \ or - 1.47 \ (2 \ d. p.)$

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not	7 ≠ 3
	equal.	
		$x \neq 0$
	$a \neq b$ means that a is not equal to b.	
2. Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or equal to	
	1	-1, 0, 1, 2, 3, 4
	$x \le 6$ means x is less than or equal to 6	
3. Inequalities	Inequalities can be shown on a number line.	
on a Number		-2 -1 0 1 2 3 $x \ge 0$
Line	Open circles are used for numbers that are	1
	less than or greater than $(< or >)$	
		-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	Closed circles are used for numbers that	O .
	are less than or equal or greater than or	•
	equal $(\leq or \geq)$	$-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 \le x < 4$

Topic: Simultaneous Equations


Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations, each	2x + y = 7
Simultaneous Equations	involving two or more variables (letters).	3x - y = 8
	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	y = 1
2. Variable	A symbol, usually a letter, which	y = 1 In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
	unknown.	
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by Elimination)	2. Eliminate this variable by adding or subtracting the equations (Same Sign	Multiply the first equation by 2.
,	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	one of the previous equations.	·
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy	
	both of the original equations.	$5x + 2 \times 2 = 9$
		5x + 4 = 9
		5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by Substitution)	2. Substitute the right-hand side of the rearranged equation into the other equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	 3. Expand and solve this equation. 4. Substitute the value into the y = or 	Substitute: $3x + 4(2x + 3) = 1$
	x = equation.	
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
		x = -1
		Substitute: $y = 2 \times -1 + 3$ y = 1
		Solution: $x = -1, y = 1$

Draw the graphs of the two equations.

The solutions will be where the lines meet.

The solution can be written as a **coordinate**.

$$y = 5 - x$$
 and $y = 2x - 1$.

They meet at the point with coordinates (2,3) so the answer is x = 2 and y = 3

Higher Only Topics