
Topic: Fractions

	Then just add or subtract the numerators and keep the denominator the same .	$\frac{\frac{2}{3} = \frac{10}{15}}{\frac{4}{5} = \frac{12}{15}}$ $\frac{\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing Fractions	 'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second fraction. 	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$

Topic/Skill	Definition/Tips	Fyampla
•		Example
1. Percentage	Number of parts per 100.	31% means $\frac{31}{100}$
2. Finding	To find 10% , divide by 10	$10\% \text{ of } \pounds 36 = 36 \div 10 = \pounds 3.60$
10%	10 mild 10,0, alviae by 10	
1070		
3. Finding 1%	To find 1%, divide by 100	$1\% \text{ of } \pounds 8 = 8 \div 100 = \pounds 0.08$
- 8		
4. Percentage	Difference 100%	A games console is bought for £200
Change	$\frac{Difference}{Original} \times 100\%$	and sold for $\pounds 250$.
		% change = $\frac{50}{200} \times 100 = 25\%$
		200
5. Fractions to	Divide the numerator by the	3
Decimals	denominator using the bus stop method.	$\frac{3}{8} = 3 \div 8 = 0.375$
		0
6. Decimals to	Write as a fraction over 10, 100 or 1000	$0.36 = \frac{36}{100} = \frac{9}{25}$
Fractions	and simplify.	$0.36 = \frac{100}{100} = \frac{100}{25}$
7. Percentages	Divide by 100	$8\% = 8 \div 100 = 0.08$
to Decimals		
8. Decimals to	M-14-1-1-100	0.4 0.4 × 1000/ 400/
8. Decimais to Percentages	Multiply by 100	$0.4 = 0.4 \times 100\% = 40\%$
rencentages		
9. Fractions to	Percentage is just a fraction out of 100.	3 12
Percentages	Make the denominator 100 using	$\frac{3}{25} = \frac{12}{100} = 12\%$
	equivalent fractions.	
	When the denominator doesn't go in to	$\frac{9}{17} \times 100 = 52.9\%$
	100, use a calculator and multiply the	$\frac{1}{17} \times 100 = 52.9\%$
	fraction by 100.	
10.	Percentage is just a fraction out of 100.	$14\% = \frac{14}{100} = \frac{7}{50}$
Percentages to	Write the percentage over 100 and	$14\% = \frac{1}{100} = \frac{1}{50}$
Fractions	simplify.	

Topic: Calculating with Percentages

₩²⁵

Topic/Skill	Definition/Tips	Example
1. Increase or	Non-calculator: Find the percentage and	Increase 500 by 20% (Non Calc):
Decrease by a	add or subtract it from the original	10% of $500 = 50$
Percentage	amount.	so 20% of 500 = 100
		500 + 100 = 600
	Calculator: Find the percentage multiplier	
	and multiply.	Decrease 800 by 17% (Calc):
		100%-17%=83%
		$83\% \div 100 = 0.83$
		$0.83 \ge 800 = 664$
2. Percentage	The number you multiply a quantity by to	The multiplier for increasing by 12% is
Multiplier	increase or decrease it by a percentage.	1.12
		The multiplier for decreasing by 12% is
		0.88
		The multiplier for increasing by 100%
		is 2.
3. Reverse	Find the correct percentage given in the	A jumper was priced at £48.60 after a
Percentage	question, then work backwards to find	10% reduction. Find its original price.
	100%	
		100% - 10% = 90%
	Look out for words like ' before ' or	
	'original'	$90\% = \pounds 48.60$
		$1\% = \pounds 0.54$
		$100\% = \pounds 54$
4. Simple	Interest calculated as a percentage of the	£1000 invested for 3 years at 10%
Interest	original amount.	simple interest.
		$10\% \text{ of } \pounds 1000 = \pounds 100$
		X
		Interest = $3 \times \pounds 100 = \pounds 300$

Topic: Ratio

57 F

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
2 Duen ention	Written using the ':' symbol.	In a close with 12 hours and 0 sinks the
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the $13 + 13$
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5 \cdot 7 = 1 \cdot \frac{7}{2}$ in the form $1 \cdot n$
form $1: n$ or	numbers to make one part equal 1.	$5:7 = 1:\frac{7}{5}$ in the form $1:n$
n:1		$5:7 = \frac{5}{7}:1$ in the form n : 1
5 01 · · ·		
5. Sharing in a Ratio	1. Add the total parts of the ratio.	Share $\pounds 60$ in the ratio $3:2:1$.
Kallo	2. Divide the amount to be shared by this value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	3 x 10 = 30, 2 x 10 = 20, 1 x 10 = 10
		$\pounds 30: \pounds 20: \pounds 10$
	Use only if you know the total .	X 2
6. Proportional	Comparing two things using multiplicative	
Reasoning	reasoning and applying this to a new situation.	30 minutes 60 pages
	Situation.	? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	× 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had $\pounds 16$, found out the total
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
-		$3 + 2 + 5 = 10$ parts, so $8 \ge 10 = \text{\pounds}80$
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for $\pounds 1.28 \rightarrow 16p$ each (÷by 8)
	the quantity.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the best value.	13) Pack of 13 cakes is best value.

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct	If two quantities are in direct proportion, as	
Proportion	one increases, the other increases by the	v = kx
1	same percentage.	$y = \kappa x$
	If y is directly proportional to x , this can be	\leftarrow
	written as $y \propto x$	x
	An equation of the form $y = kx$ represents	
	direct proportion, where k is the constant of	
2 1	proportionality.	
2. Inverse Propertion	If two quantities are inversely proportional,	^y
Proportion	as one increases, the other decreases by the same percentage.	$v = \frac{k}{k}$
	same percentage.	y x
	If y is inversely proportional to x , this can be	
	written as $y \propto \frac{1}{x}$	x
	x	
	k star k	
	An equation of the form $y = \frac{k}{x}$ represents	*
	inverse proportion.	
3. Using	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$	p is directly proportional to q.
proportionality formulae	k 1	When $p = 12$, $q = 4$.
Iormulae	Inverse: $y = \frac{k}{x}$ or $y \propto \frac{1}{x}$	Find p when $q = 20$.
		1. $p = kq$
	1. Solve to find k using the pair of values in	$12 = k \times 4$
	the question.	so k = 3
	2. Rewrite the equation using the k you have just found.	
	3. Substitute the other given value from the	2. $p = 3q$
	question in to the equation to find the	
	missing value.	3. $p = 3 \ge 20 = 60$, so $p = 60$
4. Direct	Graphs showing direct proportion can be	Direct Proportion Graphs
Proportion with	written in the form $y = kx^n$	$\frac{1}{y} = 3x^2$
powers	Direct proportion graphs will always start at	
	the origin.	y = 2x
		· ///
		$y = 0.5x^5$
5. Inverse	Graphs showing inverse proportion can be	Inverse Proportion Graphs
Proportion with	written in the form $y = \frac{k}{r^n}$	a_1 $y = \frac{2}{s}$
powers	Inverse proportion graphs will never start at x^n	$y = \frac{3}{\lambda^2}$
	the origin.	
		4
		$y = \frac{0.5}{x^2}$

Tibshelf Community School

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions:
		$2x^3 - 5x^2$
		9x - 1 $x^2 + 7x + 10 = (x + 5)(x + 2)$
2. Factorising	When a quadratic expression is in the form	
Quadratics	$x^2 + bx + c$ find the two numbers that add	(because 5 and 2 add to give 7 and
	to give b and multiply to give c.	multiply to give 10)
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$
		x + 2x - 6 = (x + 4)(x - 2) (because +4 and -2 add to give +2 and
		multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$\frac{x^2 - 25}{x^2 - 25} = (x + 5)(x - 5)$
of Two	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
Squares		
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a	$x = \pm 7$
	negative solution.	2
5. Solving	Factorise and then $solve = 0$.	$x^2 - 3x = 0$
Quadratics		x(x-3) = 0
$(ax^2 + bx = 0)$		x = 0 or x = 3
0) 6. Solving	Factorise the quadratic in the usual way.	Solve $x^2 + 3x - 10 = 0$
Quadratics by	Solve = 0	$50100 \times 100 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(a = 1)	Make sure the equation $= 0$ before	x = -5 or x = 2
	factorising.	
7. Factorising	When a quadratic is in the form	Factorise $6x^2 + 5x - 4$
Quadratics	$ax^2 + bx + c$	
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give +5 and
	multiply to give ac.	multiply to give -24 are $+8$ and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs: 2n(2n+4) = 1(2n+4)
	4. Factorise in pairs – you should get the same bracket twice	2x(3x+4) - 1(3x+4)
	5. Write your two brackets – one will be the	5. Answer = $(3x + 4)(2x - 1)$
	repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
8. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
(<i>a</i> ≠ 1)	Make sure the equation $= 0$ before	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
	factorising.	$x - \frac{1}{2} = 07 - \frac{1}{2}$

9. Completing	A quadratic in the form $x^2 + bx + c$ can be	Complete the square of
the Square	written in the form $(x + p)^2 + q$	$y = x^2 - 6x + 2$
(when $a = 1$)		Answer:
	1. Write a set of brackets with x in and half	$(x-3)^2 - 3^2 + 2$
	the value of <i>b</i> .	
	2. Square the bracket.	$=(x-3)^2-7$
	-	
	3. Subtract $\left(\frac{b}{2}\right)^2$ and add <i>c</i> .	The minimum value of this expression
	4. Simplify the expression.	occurs when $(x - 3)^2 = 0$, which
		occurs when $x = 3$
	You can use the completing the square	When $x = 3$, $y = 0 - 7 = -7$
	form to help find the maximum or	
	minimum of quadratic graph.	Minimum point = (3, -7)
10.	A quadratic in the form $ax^2 + bx + c$ can	Complete the square of
Completing	be written in the form $p(x+q)^2 + r$	$4x^2 + 8x - 3$
the Square		Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2 + 2x] - 3$
	factorise out <i>a</i> at the start.	$=4[(x+1)^2-1^2]-3$
		$=4(x+1)^2-4-3$
		$=4(x+1)^2-7$
11. Solving	Complete the square in the usual way and	$= 4(x+1)^2 - 7$ Solve $x^2 + 8x + 1 = 0$
Quadratics by	use inverse operations to solve.	
Completing	· · · · · · · · · · · · · · · · · · ·	Answer:
the Square		$(x+4)^2 - 4^2 + 1 = 0$
1		$(x+4)^2 - 15 = 0$
		$(x+4)^2 = 15$
		$(x + 4) = \pm \sqrt{15}$
12 Calaring	A man lastic in the form and they be a	$x = -4 \pm \sqrt{15}$ Solve $3x^2 + x - 5 = 0$
12. Solving	A quadratic in the form $ax^2 + bx + c = 0$	Solve $3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	Answer
using the Quadratic	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}$	Answer: $a = 2 \ h = 1 \ a = 5$
Formula	2 <i>a</i>	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does not	4 1 42 4 2 2 5
	factorise easily.	$x = \frac{-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}}{2 \times 3}$
		2×3
		$x = \frac{-1 \pm \sqrt{61}}{6}$
		~ 6
		x = 1.14 or - 1.47 (2 d. p.)

Topic: Inequalities

4. Graphical Inequalities can be represented on a Shade the region that satisfies:	2
$x \neq 0$ 2. Inequality symbols $x > 2$ means x is greater than 2 x < 3 means x is less than 3 x ≥ 1 means x is greater than or equal to 1 x ≤ 6 means x is less than or equal to 6State the integers that satisfy $-2 < x \leq 4$.3. Inequalities on a Number LineInequalities can be shown on a number line. open circles are used for numbers that are less than or greater than $(< or >)$ Image: Closed circles are used for numbers that are less than or equal or greater than or equal $(\leq or \geq)$ Image: Closed circles are used for numbers that are less than or equal or greater than or equal $(\leq or \geq)$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
$a \neq b$ means that a is not equal to b.2. Inequality symbols $x > 2$ means x is greater than 2 x < 3 means x is less than 3 x ≥ 1 means x is greater than or equal to 1 x ≤ 6 means x is less than or equal to 6State the integers that satisfy $-2 < x \leq 4$.3. Inequalities on a Number LineInequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(< or >)$ $-1, 0, 1, 2, 3, 4$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\leq or \geq)$ $-5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ -5 \leq 4$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
2. Inequality symbols $x > 2$ means x is greater than 2 x < 3 means x is less than 3 x ≥ 1 means x is greater than or equal to 1 x ≤ 6 means x is less than or equal to 6State the integers that satisfy $-2 < x \leq 4$.3. Inequalities on a Number LineInequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(< or >)$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\leq or \geq)$ State the integers that satisfy $-2 < x \leq 4$.4. GraphicalInequalities can be represented on aInequalities can be represented on aState the integers that satisfy $-2 < x \leq 4$.	2
symbols $x < 3$ means x is less than 3 $x \ge 1$ means x is greater than or equal to 1 $x \le 6$ means x is less than or equal to 6 $-2 < x \le 4$. $-1, 0, 1, 2, 3, 4$ 3. Inequalities on a Number LineInequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(< or >)$ $-2 < x \le 4$. $-1, 0, 1, 2, 3, 4$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$ $-2 < 1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ x < 2$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
$x \ge 1$ means x is greater than or equal to 1 $x \le 6$ means x is less than or equal to 6 $-1, 0, 1, 2, 3, 4$ 3. Inequalities on a Number LineInequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(< or >)$ $-2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ x < 2$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$ $-5 -4 -3 -2 -1 \ 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ -5 \le 4$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
1 $x \le 6$ means x is less than or equal to 6-1, 0, 1, 2, 3, 43. Inequalities on a Number LineInequalities can be shown on a number line1, 0, 1, 2, 3, 4Open circles are used for numbers that are less than or greater than (< or >)-2 -1 0 1 2 3 x ≥ 0 Closed circles are used for numbers that are less than or equal or greater than or equal ($\le or \ge$)-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2	2
$x \le 6$ means x is less than or equal to 63. Inequalities on a Number LineInequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than (< or >)Closed circles are used for numbers that are less than or equal or greater than or equal ($\le or \ge$)4. GraphicalInequalities can be represented on a	2
3. Inequalities on a Number LineInequalities can be shown on a number line. Open circles are used for numbers that are less than or greater than $(< or >)$ $-2 -1 0 1 2 3 x \ge 0$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$ $-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
on a Number LineOpen circles are used for numbers that are less than or greater than $(< or >)$ $-2 -1 0 1 2 3 x \ge 0$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$ $-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
LineOpen circles are used for numbers that are less than or greater than $(< or >)$ $-2 -1 0 1 2 3 x \ge 0$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$ $-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
I less than or greater than $(< or >)$ I less than or greater than $(< or >)$ Closed circles are used for numbers that are less than or equal or greater than or equal $(\le or \ge)$ -5 -4 -3 -2 -1 0 1 2 3 4 5 $x < 2$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
Closed circles are used for numbers that are less than or equal or greater than or equal $(\leq or \geq)$ -5 -4 -3 -2 -1 0 1 2 3 4 5 $x < 2$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
Closed circles are used for numbers that are less than or equal or greater than or equal ($\leq or \geq$) \bigcirc -5 -4 -3 -2 -1 0 1 2 3 4 5 $-5 \leq$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	2
equal ($\leq or \geq$)-5 -4 -3 -2 -1 0 1 2 3 4 5 $-5 \leq$ 4. GraphicalInequalities can be represented on aShade the region that satisfies:	
4. Graphical Inequalities can be represented on a Shade the region that satisfies:	
	<i>x</i> < 4
Inequalitiescoordinate grid. $y > 2x, x > 1$ and $y \le 3$	
If the inequality is strict $(x > 2)$ then use a dotted line .	
If the inequality is not strict $(x \le 6)$ then	
use a solid line. $y = 3$	
R	
Shade the region which satisfies all the	_
inequalities.	-
9 2 4	
5. Quadratic Sketch the quadratic graph of the Solve the inequality $x^2 - x - 12$	2 < 0
Inequalities inequality.	
Sketch the quadratic:	,
If the expression is $> or \ge$ then the answer will be above the vertex of $r \ge 1$	4
will be above the x-axis . If the expression is $\langle or \leq$ then the answer	+
will be below the x-axis .	
will be below the x-axis.	
Look carefully at the inequality symbol in	
the question. The required region is below the t	x-axis.
so the final answer is:	;
Look carefully if the quadratic is a positive $-3 < x < 4$	
or negative parabola.	
If the question had been > 0 , the	
answer would have been:	
x < -3 or x > 4	

Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous	involving two or more variables (letters).	3x - y = 8
Equations		
	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	<i>y</i> = 1
2. Variable	A symbol, usually a letter, which	In the equation $x + 2 = 5$, x is the
	represents a number which is usually	variable.
0 00 000	unknown.	
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign	
	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using the other variable.	10x + 3y = 16
	4. Substitute the value you found back into	Same Sign Subtract (+10x on both)
	one of the previous equations.	y = 2
	5. Solve the equation you get.	Substitute $y = 2$ in to equation.
	6. Check that the two values you get satisfy	Substitute $y = 2$ in to equation.
	both of the original equations.	$5x + 2 \times 2 = 9$
		5x + 4 = 9
		5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y-2x=3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by Substitution)	2. Substitute the right-hand side of the rearranged equation into the other equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
,	3. Expand and solve this equation.	
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	$x = \dots$ equation.	
	5. Check that the two values you get	Solve: $3x + 8x + 12 = 1$
	satisfy both of the original equations.	11x = -11
		x = -1
		Substitute: $y = 2 \times 1 + 2$
		Substitute: $y = 2 \times -1 + 3$ y = 1
		y - 1
		Solution: $x = -1$, $y = 1$

6 Salving	Draw the graphs of the two equations	
6. Solving Simultaneous	Draw the graphs of the two equations.	y = 2x - 1
Equations	The solutions will be where the lines	•
(Graphically)	meet.	
(010)		y = 5 - x
	The solution can be written as a	
	coordinate.	
		y = 5 - x and $y = 2x - 1$.
		They must at the point with accordinates
		They meet at the point with coordinates $(2, 3)$ so the engineer is $x = 2$ and $y = 2$
7. Solving	Method 1: If both equations are in the same	(2,3) so the answer is $x = 2$ and $y = 3$ Example 1
Linear and	form (eg. Both $y =$):	Solve
Quadratic	1. Set the equations equal to each other.	$y = x^2 - 2x - 5$ and $y = x - 1$
Simultaneous	2. Rearrange to make the equation equal	
Equations	to zero.	$x^2 - 2x - 5 = x - 1$
Ĩ	3. Solve the quadratic equation.	$x^2 - 3x - 4 = 0$
	4. Substitute the values back in to one of	(x-4)(x+1) = 0
	the equations.	x = 4 and $x = -1$
	Method 2: If the equations are not in the	y = 4 - 1 = 3 and
	same form:	y = -1 - 1 = -2
	1. Rearrange the linear equation into the form $y = -ar x = -ar x$	
	form $y =$ or $x =$ 2. Substitute in to the quadratic equation.	Answers: (4,3) and (-1,-2)
	3. Rearrange to make the equation equal	Example 2
	to zero.	Solve $x^2 + y^2 = 5$ and $x + y = 3$
	4. Solve the quadratic equation.	Solve $x + y = 5$ and $x + y = 5$
	5. Substitute the values back in to one of	x = 3 - y
	the equations.	$(3-y)^2 + y^2 = 5$
		$9 - 6y + y^2 + y^2 = 5$
	You should get two pairs of solutions (two	$2y^2 - 6y + 4 = 0$
	values for <i>x</i> , two values for <i>y</i> .)	$y^2 - 3y + 2 = 0$
		(y-1)(y-2) = 0
	Graphically, you should have two points of	y = 1 and $y = 2$
	intersection.	
		x = 3 - 1 = 2 and $x = 3 - 2 = 1$
		Answers: (2,1) and (1,2)