Topic: Algebraic Fractions

5 👬

Topic/Skill	Definition/Tips	Example
1. Algebraic	A fraction whose numerator and	6 <i>x</i>
Fraction	denominator are algebraic expressions.	$\overline{3x-1}$
2. Adding/ Subtracting Algebraic Fractions	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is <i>bd</i> $\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$	$= \frac{\frac{1}{x} + \frac{x}{2y}}{\frac{1}{2xy} + \frac{x(x)}{2xy}}$ $= \frac{\frac{2y + x^2}{2xy}}{\frac{2y + x^2}{2xy}}$
3. Multiplying Algebraic Fractions	Multiply the numerators together and the denominators together. $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$\frac{x}{3} \times \frac{x+2}{x-2} = \frac{x(x+2)}{3(x-2)} = \frac{x^2+2x}{3x-6}$
4. Dividing Algebraic Fractions	Multiply the first fraction by the reciprocal of the second fraction. $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	$\frac{\frac{x}{3} \div \frac{2x}{7}}{= \frac{x}{3} \times \frac{7}{2x}}$ $= \frac{\frac{7x}{6x}}{= \frac{7}{6}}$
5. Simplifying Algebraic Fractions	Factorise the numerator and denominator and cancel common factors .	$\frac{x^2 + x - 6}{2x - 4} = \frac{(x + 3)(x - 2)}{2(x - 2)} = \frac{x + 3}{2}$

Subject: Maths

Topic: Functions

Topic/Skill	Definition/Tips	Example
1. Function Machine	Takes an input value, performs some operations and produces an output value.	INPUT x 3 + 4 OUTPUT
2. Function	A relationship between two sets of values.	$f(x) = 3x^2 - 5$ 'For any input value, square the term, then multiply by 3, then subtract 5'.
3. Function notation	f(x) x is the input value f(x) is the output value.	f(x) = 3x + 11 Suppose the input value is $x = 5$ The output value is $f(5) = 3 \times 5 + 11 = 26$
4. Inverse function	 f⁻¹(x) A function that performs the opposite process of the original function. 1. Write the function as y = f(x) 2. Rearrange to make x the subject. 3. Replace the y with x and the x with f⁻¹(x) 	$f(x) = (1 - 2x)^{5}.$ Find the inverse. $y = (1 - 2x)^{5}$ $\sqrt[5]{y} = 1 - 2x$ $1 - \sqrt[5]{y} = 2x$ $\frac{1 - \sqrt[5]{y}}{2} = x$ $f^{-1}(x) = \frac{1 - \sqrt[5]{x}}{2}$
5. Composite function	A combination of two or more functions to create a new function. fg(x) is the composite function that substitutes the function $g(x)$ into the function $f(x)$. fg(x) means 'do g first, then f' gf(x) means 'do f first, then g'	$f(x) = 5x - 3, g(x) = \frac{1}{2}x + 1$ What is $fg(4)$? $g(4) = \frac{1}{2} \times 4 + 1 = 3$ $f(3) = 5 \times 3 - 3 = 12 = fg(4)$ What is $fg(x)$? $fg(x) = 5\left(\frac{1}{2}x + 1\right) - 3 = \frac{5}{2}x + 2$

Topic: Further Quadratics

্য 👬

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
	$ax^2 + bx + c$	$\frac{x^2}{8x^2 - 3x + 7}$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$ 9x - 1
2. Factorising Quadratics	When a quadratic expression is in the form $x^2 + bx + c$ find the two numbers that add to give b and multiply to give c.	$x^{2} + 7x + 10 = (x + 5)(x + 2)$ (because 5 and 2 add to give 7 and multiply to give 10)
		$x^2 + 2x - 8 = (x + 4)(x - 2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference of Two Squares	An expression of the form $a^2 - b^2$ can be factorised to give $(a + b)(a - b)$	$x^{2} - 25 = (x + 5)(x - 5)$ $16x^{2} - 81 = (4x + 9)(4x - 9)$
4. Solving Quadratics $(ax^2 = b)$	Isolate the x^2 term and square root both sides. Remember there will be a positive and a negative solution .	$2x^{2} = 98$ $x^{2} = 49$ $x = \pm 7$
5. Solving Quadratics $(ax^2 + bx = 0)$	Factorise and then solve = 0 .	$x^{2} - 3x = 0$ x(x - 3) = 0 x = 0 or x = 3
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
(a = 1)	Make sure the equation $= 0$ before factorising.	Factorise: $(x + 5)(x - 2) = 0$ x = -5 or x = 2
7. Quadratic Graph	A 'U-shaped' curve called a parabola. The equation is of the form $y = ax^2 + bx + c$, where <i>a</i> , <i>b</i> and <i>c</i> are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down.	$y \qquad y = x^{2}-4x-5$
8. Roots of a Quadratic	A root is a solution . The roots of a quadratic are the <i>x</i> - intercepts of the quadratic graph .	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

9. Turning	A turning point is the point where a	
Point of a	quadratic turns.	
Ouadratic	1	
	On a positive parabola , the turning point is	
	called a minimum .	
	On a negative parabola , the turning point	
	is called a maximum .	
10. Factorising	When a quadratic is in the form	Eactorise $6x^2 + 5x - 4$
Ouadratics	$ax^2 + bx + c$	
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2 Find two numbers that add to give b and	2 Two numbers that add to give ± 5 and
	multiply to give ac	multiply to give -24 are $+8$ and -3
	3 Re-write the quadratic replacing hx with	$3 6r^2 + 8r - 3r - 4$
	the two numbers you found	4 Factorise in pairs:
	4 Factorise in pairs $-$ you should get the	$2r(3r \pm A) = 1(3r \pm A)$
	same bracket twice	5 Answer = (3r + 4)(2r - 1)
	5 Write your two brackets – one will be the	3.7 mswor = (3x + 1)(2x - 1)
	repeated bracket the other will be made of	
	the factors outside each of the two brackets	
11. Solving	Factorise the quadratic in the usual way	Solve $2r^2 + 7r - 4 = 0$
Quadratics by	Solve = 0	
Factorising		Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation $= 0$ before	1
	factorising.	$x = \frac{1}{2} \text{ or } x = -4$
12.	A quadratic in the form $x^2 + bx + c$ can be	Complete the square of
Completing	written in the form $(x + p)^2 + q$	$y = x^2 - 6x + 2$
the Square		Answer:
(when $a = 1$)	1. Write a set of brackets with <i>x</i> in and half	$(x-3)^2 - 3^2 + 2$
	the value of <i>b</i> .	
	2. Square the bracket.	$=(x-3)^2-7$
	3 Subtract $\left(\frac{b}{a}\right)^2$ and add c	
		The minimum value of this expression
	4. Simplify the expression.	occurs when $(x - 3)^2 = 0$, which
	Very see use the completing the series	occurs when $x = 3$
	form to holp find the maximum or	When $x = 3$, $y = 0 - 7 = -7$
	minimum of quadratic graph	
		Minimum point = (3, -7)
13.	A quadratic in the form $ax^2 + bx + c$ can	Complete the square of
Completing	be written in the form $\mathbf{p}(\mathbf{x} + \mathbf{q})^2 + \mathbf{r}$	$4x^2 + 8x - 3$
the Square		Answer:
(when $a \neq 1$)	Use the same method as above, but	$4[x^2 + 2x] - 3$
	factorise out a at the start.	$= 4[(x+1)^2 - 1^2] - 3$
		$= 4(x+1)^2 - 4 - 3$
14 Coluina	Complete the generation the versal wave and	$= 4(x+1)^2 - 7$
14. Solving	complete the square in the usual way and use inverse operations to solve	Solve $x^- + \delta x + 1 = 0$
Completing	use myerse operations to solve.	Answer
the Square		$(x \perp A)^2 = A^2 \perp 1 = 0$
the square		$(x + 4)^2 - 4 + 1 = 0$ $(x + 4)^2 - 15 = 0$
		$(x + 4)^{-} - 15 = 0$

ېنې د. مېر

-	-	2
2	× 12	
ž		
	m	
	JSC.	
	×	1

		$(x+4)^2 = 15$
		$(x+4) = \pm\sqrt{15}$
		$x = -4 \pm \sqrt{15}$
15. Solving	A quadratic in the form $ax^2 + bx + c = 0$	Solve $3x^2 + x - 5 = 0$
Quadratics	can be solved using the formula:	
using the	$-b \pm \sqrt{b^2 - 4ac}$	Answer:
Quadratic	$x = \frac{2a}{2a}$	a = 3, b = 1, c = -5
Formula	Use the formula if the quadratic does not	
	factorise easily.	$-1 \pm \sqrt{1^2 - 4 \times 3 \times -5}$
		$x = \frac{2 \times 3}{2 \times 3}$
		$r - \frac{-1 \pm \sqrt{61}}{2}$
		x — 6
		x = 1.14 or - 1.47 (2 d.p.)

Topic: Simultaneous Equations

Topic/Skill	Definition/Tips	Example
1.	A set of two or more equations , each	2x + y = 7
Simultaneous Equations	involving two or more variables (letters).	3x - y = 8
-	The solutions to simultaneous equations	x = 3
	satisfy both/all of the equations.	y = 1
2. Variable	A symbol , usually a letter , which	In the equation $x + 2 = 5$, x is the
	represents a number which is usually unknown.	variable.
3. Coefficient	A number used to multiply a variable.	6z
	It is the number that comes before/in front	6 is the coefficient
	of a letter.	z is the variable
4. Solving	1. Balance the coefficients of one of the	5x + 2y = 9
Simultaneous	variables.	10x + 3y = 16
Equations (by	2. Eliminate this variable by adding or	Multiply the first equation by 2.
Elimination)	subtracting the equations (Same Sign	
	Subtract, Different Sign Add)	10x + 4y = 18
	3. Solve the linear equation you get using	10x + 3y = 16
	the other variable.	Same Sign Subtract (+10x on both)
	4. Substitute the value you found back into	y = 2
	5 Solve the equation you get	Substitute $y = 2$ in to equation
	6. Check that the two values you get satisfy	Substitute $y = 2$ in to equation.
	both of the original equations.	$5x + 2 \times 2 = 9$
		5x + 4 = 9
		5x = 5
		x = 1
		Solution: $x = 1, y = 2$
5. Solving	1. Rearrange one of the equations into the	y - 2x = 3
Simultaneous	form $y = \dots$ or $x = \dots$	3x + 4y = 1
Equations (by Substitution)	2. Substitute the right-hand side of the rearranged equation into the other equation.	Rearrange: $y - 2x = 3 \rightarrow y = 2x + 3$
	4. Substitute the value into the $y =$ or	Substitute: $3x + 4(2x + 3) = 1$
	5 Check that the two values you get	Solve: $3r + 8r + 12 - 1$
	satisfy both of the original equations.	11r = -11
		x = -1
		Substitute: $y = 2 \times -1 + 3$ y = 1
		Solution: $x = -1$, $y = 1$

6. Solving Simultaneous Equations (Graphically)	 Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate. 	y = 2x - 1
		y = 5 - x and $y = 2x - 1$.
		They meet at the point with coordinates $(2,3)$ so the answer is $x = 2$ and $y = 3$
7. Solving Linear and Quadratic Simultaneous Equations	 Method 1: If both equations are in the same form (eg. Both y =): 1. Set the equations equal to each other. 2. Rearrange to make the equation equal to zero. 3. Solve the quadratic equation. 4. Substitute the values back in to one of the equations. 	$\frac{(2,3) \text{ so the answer is } x = 2 \text{ and } y = 3}{\frac{\text{Example 1}}{\text{Solve}}}$ $y = x^2 - 2x - 5 \text{ and } y = x - 1$ $x^2 - 2x - 5 = x - 1$ $x^2 - 3x - 4 = 0$ $(x - 4)(x + 1) = 0$ $x = 4 \text{ and } x = -1$
	 Method 2: If the equations are not in the same form: 1. Rearrange the linear equation into the form y = or x = 2. Substitute in to the quadratic equation. 3. Rearrange to make the equation equal to zero. 4. Solve the quadratic equation. 5. Substitute the values back in to one of the equations. You should get two pairs of solutions (two values for x, two values for y.) Graphically, you should have two points of intersection. 	y = 4 - 1 = 3 and y = -1 - 1 = -2 Answers: (4,3) and (-1,-2) <u>Example 2</u> Solve $x^2 + y^2 = 5$ and $x + y = 3$ x = 3 - y $(3 - y)^2 + y^2 = 5$ $9 - 6y + y^2 + y^2 = 5$ $2y^2 - 6y + 4 = 0$ $y^2 - 3y + 2 = 0$ (y - 1)(y - 2) = 0 y = 1 and $y = 2x = 3 - 1 = 2$ and $x = 3 - 2 = 1Answers: (2, 1) and (1, 2)$
		Answers: (2,1) and (1,2)

Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not	7 ≠ 3
	equal.	
	a -t h magne that a is not a well to h	$x \neq 0$
2 Inequality	$a \neq b$ means that a is not equal to b. r > 2 means x is greater than 2	State the integers that satisfy
symbols	x > 2 means x is greater than 2 x < 3 means x is less than 3	-2 < x < 4
o y moons	x > 1 means x is greater than or equal to	
	1	-1, 0, 1, 2, 3, 4
	$x \leq 6$ means x is less than or equal to 6	
3. Inequalities	Inequalities can be shown on a number line.	
on a Number		-2 -1 0 1 2 3 $x \ge 0$
Line	Open circles are used for numbers that are $\log t$ than an analytic than (f, g, h)	
	less than or greater than $(< 01 >)$	
	Closed circles are used for numbers that	-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	are less than or equal or greater than or	← − − − − − − − − − −
	equal $(\leq or \geq)$	-5 -4 -3 -2 -1 0 1 2 3 4 5 $-5 \le x < 4$
4. Graphical	Inequalities can be represented on a	Shade the region that satisfies:
Inequalities	coordinate grid.	$y > 2x, x > 1 and y \le 3$
	If the inequality is strict $(\alpha > 2)$ then use a	
	If the inequality is strict $(x > 2)$ then use a dotted line	y = 2x
	If the inequality is not strict ($x < 6$) then	-4
	use a solid line. $(x = 0)$ and	y = 3
		R
	Shade the region which satisfies all the	-2
	inequalities.	x = 1
		G 2 4
5 Quadratic	Sketch the quadratic graph of the	Solve the inequality $x^2 - x - 12 < 0$
Inequalities	inequality.	Solve the inequality $x^2 - x - 12 < 0$
		Sketch the quadratic:
	If the expression is $> or \ge$ then the answer	
	will be above the x-axis .	-3 4
	If the expression is $< or \le$ then the answer	
	will be below the x-axis .	
	Look carefully at the inequality symbol in	
	the question.	The required region is below the $x_{-3}x_{15}$
	1	so the final answer is:
	Look carefully if the quadratic is a positive	-3 < x < 4
	or negative parabola.	
		If the question had been > 0 , the
		answer would have been:
		x < -3 or x > 4
6. Set Notation	A set is a collection of things, usually	{3, 6, 9} is a set.

$\{x \mid x \ge 7\}$ means 'the set of all x's, such that x is greater than or equal to 7'	$\begin{cases} x \mid x > 0 \\ \uparrow & \uparrow & \checkmark \\ \uparrow & \uparrow & \checkmark \\ \uparrow & \uparrow & \uparrow & \uparrow \\ \uparrow & \uparrow & \downarrow & \downarrow \\ \uparrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \downarrow & \downarrow & \downarrow$
The 'x' can be replaced by any letter.	
Some people use ':' instead of ' '	${x: -2 \le x < 5}$

্য 🏶 🔪 সন্থ্য

Subject: Maths

Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using	$3x + 2$ or $5y^2$
	symbols, numbers or letters,	
2. Equation	A statement showing that two expressions	2y - 17 = 15
	are equal	
3. Identity	An equation that is true for all values of	$2x \equiv x + x$
	the variables	
	An identity uses the symbol: \equiv	
4. Formula	Shows the relationship between two or	Area of a rectangle = length x width or $\frac{1}{2}$
	more variables	A= LxW
5. Coefficient	A number used to multiply a variable.	6Z
	It is the number that some hefere/in front	6 is the coefficient
	of a lotter	o is the veriable
6 Odds and	An even number is a multiple of 2	If n is an integer (whole number):
U. Ouus allu Evens	An odd number is an integer which is not a	If it is an integer (whole number).
Livens	multiple of 2	An even number can be represented by
	multiple of 2.	2n or $2m$ etc
		An odd number can be represented by
		2n-1 or 2n+1 or 2m+1 etc.
7. Consecutive	Whole numbers that follow each other in	If n is an integer:
Integers	order.	C
C		n , n +1, n +2 etc. are consecutive
		integers.
8. Square	A term that is produced by multiply another	If n is an integer:
Terms	term by itself.	
		n^2 , m^2 etc. are square integers
9. Sum	The sum of two or more numbers is the	The sum of 4 and 6 is 10
	value you get when you add them together.	
10. Product	The product of two or more numbers is the	The product of 4 and 6 is 24
	value you get when you multiply them	
	together.	
11. Multiple	To show that an expression is a multiple of	$4n^2 + 8n - 12$ is a multiple of 4
	a number, you need to show that you can	because it can be written as:
	factor out the number.	
		$4(n^2 + 2n - 3)$

Topic: Equation of a Circle and Tangent

ः अक्ष

Topic/Skill	Definition/Tips	Example
1. Equation of a Circle	The equation of a circle , centre (0,0), radius r, is: $x^2 + y^2 = r^2$	$r^2 + y^2 = 25$
2. Tangent	 A straight line that touches a circle at exactly one point, never entering the circle's interior. A radius is perpendicular to a tangent at the point of contact. 	A + y = 23
3. Gradient	Gradient is another word for slope . $G = \frac{Rise}{Run} = \frac{Change in y}{Change in x} = \frac{y_2 - y_1}{x_2 - x_1}$	(x_{2},y_{2}) $B (-3,4)$ (x_{2},y_{2}) $B (-3,4)$ (x_{2},y_{2}) $(x_{3},4)$ (x_{2},y_{1}) $We need to find the GRADIENT between A at (3,-2) and B at (-3,4)$ $m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$ $m = \frac{4 - \frac{2}{3}}{3 - 3}$ $m = 6/6 = 1 \sqrt{3}$
4. Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	y = 5cm (Pythagoras' Theorem)

Subject: Maths

Topic: Graphs and Graph Transformations

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\$
2. Linear	Straight line graph.	Example:
Graph	an x-term , a y-term and a number .	butther examples: x = y $y = 4$ $x = -2$ $y = 2x - 7$ $y + x = 10$ $2y - 4x = 12$
3. Quadratic	A ' U-shaped ' curve called a parabola .	$y \uparrow y = x^2 - 4x - 5$
Graph	The equation is of the form $y = ax^2 + bx + c$, where a, b and c are	
	numbers, $a \neq 0$.	-1 5 *
	If $a < 0$, the parabola is upside down .	(2,-9)
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is an number.	a>0 $a<0$
	If $a > 0$, the curve is increasing. If $a < 0$, the curve is decreasing.	
5. Reciprocal	The equation is of the form $y = \frac{A}{r}$, where A	y t
Graph	is a number and $x \neq 0$.	
	The graph has asymptotes on the x-axis	y = 1/x
	and y-axis.	
6. Asymptote	A straight line that a graph approaches but never touches .	
		horizontal asymptote
		vertical asymptote

7. Exponential Graph	The equation is of the form $y = a^x$, where <i>a</i> is a number called the base . If $a > 1$ the graph increases . If $0 < a < 1$, the graph decreases . The graph has an asymptote which is the x-axis .	
8. $y = \sin x$	Key Coordinates: (0,0), (90, 1), (180, 0), (270, -1), (360, 0) <i>y</i> is never more than 1 or less than -1. Pattern repeats every 360°.	7 1.0 graph of $y = \sin \theta$ 90° 180° 270° 360° 450° 540° 630° 720° 1.0
9. $y = \cos x$	Key Coordinates: (0, 1), (90, 0), (180, -1), (270, 0), (360, 1) <i>y</i> is never more than 1 or less than -1. Pattern repeats every 360°.	graph of y = cosine θ 1.0 90 180* 270* 360* 450* 540* 630* 720* 1.0
10. $y = \tan x$	Key Coordinates: (0, 0), (45, 1), (135, -1), (180, 0), (225, 1), (315, -1), (360, 0) Asymptotes at $x = 90$ and $x = 270$ Pattern repeats every 360°.	y graph of y = tan θ 6 4 2 -2 -2 -4 -4 -2 -4 -4 -2 -2 -4 -2 -4 -2 -4 -2 -4 -2 -2 -4 -2 -2 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4
11. $f(x) + a$	Vertical translation up a units. $\begin{pmatrix} 0 \\ a \end{pmatrix}$	$ \begin{array}{c} f(x) \\ f$
12. $f(x + a)$	Horizontal translation $\frac{\text{left}}{0}$ a units. $\begin{pmatrix} -a \\ 0 \end{pmatrix}$	f(x+2) f(x) y f(x-2)
13f(x)	Reflection over the x-axis .	$-3 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \times x$ $-3 \cdot 2 \cdot 1 + 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \times x$ $-5 \cdot (x) + MathBits.com$
14. $f(-x)$	Reflection over the y-axis.	f (-x) -5 -4 -3 -2 -7 -1 + 2 -3 -4 -5 - x

Tibshelf Community School