Topic: Basic Probability

ν³⁷ ₩ γα

Topic/Skill	Definition/Tips	Example
1. Probability	The likelihood/chance of something	
	happening.	Impossible Unlikely Even Chance Likely Certain
		Impossible Oninety Even churce Enkely dei fam
	Is expressed as a number between 0 (impossible) and 1 (certain).	
	(impossible) and T (certain).	1-in-6 Chance 4-in-5 Chance
	Can be expressed as a fraction, decimal,	
	percentage or in words (likely, unlikely,	
	even chance etc.)	
2. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
3. Theoretical	Number of Favourable Outcomes	cards.
7. Theoretical Probability		Probability of rolling a 4 on a fair 6-
-	Total Number of Possible Outcomes	sided die = $\frac{1}{6}$.
4. Relative	Number of Successful Trials	A coin is flipped 50 times and lands on
Frequency	Total Number of Trials	Tails 29 times.
		The relative frequency of getting Tails
		$=\frac{29}{50}.$
5. Expected Outcomes	To find the number of expected outcomes,	The probability that a football team
Outcomes	multiply the probability by the number of trials.	wins is 0.2 How many games would you expect them to win out of 40?
	ti fais.	you expect them to will out of 40.
		$0.2 \times 40 = 8 games$
6. Exhaustive	Outcomes are exhaustive if they cover the	When rolling a six-sided die, the
	entire range of possible outcomes.	outcomes 1, 2, 3, 4, 5 and 6 are
		exhaustive, because they cover all the
	The probabilities of an exhaustive set of	possible outcomes.
7. Mutually	outcomes adds up to 1.Events are mutually exclusive if they	Examples of mutually exclusive events:
Exclusive	cannot happen at the same time.	Examples of mutually exclusive events.
Literasite	cannot nappen at the same time.	- Turning left and right
	The probabilities of an exhaustive set of	- Heads and Tails on a coin
	mutually exclusive events adds up to 1.	
		Examples of non mutually exclusive
		events:
		- King and Hearts from a deck of cards,
		because you can pick the King of
		Hearts
8. Frequency	A diagram showing how information is	Wears glasses
Tree	categorised into various categories.	
		8015 Does not wear glasses
	The numbers at the ends of branches tells	Q
	us how often something happened	Gings Wears glasses
	(frequency).	
		Does not wear glasses

Tibshelf Community School

	The lines connected the numbers are called branches .									
0.0.1										
9. Sample	The set of all possible outcomes of an		+	1	2	3	4	5	6	
Space	experiment.	(1	2	3	4	5	6	7	
			2	3	4	5	6	7	8	
			3	4	5	6	7	8	9	
			4	5	6	7	8	9	10	
			5	6	7	8	9	10	11	
)	6	7	8	9	10	11	12	
10. Sample	A sample is a small selection of items from	A samp	ole c	coul	d b	e se	lect	ing	10 s	students
	a population.	from a	yea	r gr	oup	ats	scho	ool.		
	A sample is biased if individuals or groups									
	from the population are not represented in									
	the sample.									
11. Sample	The larger a sample size, the closer those A sample size of 100 gives a mor					re				
Size	probabilities will be to the true probability.	reliable	res	ult	thai	nas	sam	ple	size	of 10.

Topic: Systematic Listing

Topic/Skill	Definition/Tips	Example
1.	A collection of things, where the order	How many combinations of two
Combination	does not matter.	ingredients can you make with apple,
		banana and cherry?
		Apple, Banana
		Apple, Cherry
		Banana, Cherry
		3 combinations
2. Permutation	A collection of things, where the order	You want to visit the homes of three
	does matter.	friends, Alex (A), Betty (B) and
		Chandra (C) but haven't decided the
		order. What choices do you have?
		ABC
		ACB
		BAC
		BCA
		CAB
		CBA
3.	When something has n different types,	How many permutations are there for a
Permutations	there are <i>n</i> choices each time.	three-number combination lock?
with	there are n enorces each time.	
Repetition	Choosing r of something that has n	10 numbers to choose from $\{1, 2, \dots, 10\}$
	different types, the permutations are:	and we choose 3 of them \rightarrow
		$10 \times 10 \times 10 = 10^3 = 1000$
	$n \times n \times \dots (r \ times) = \mathbf{n}^r$	permutations.
4.	We have to reduce the number of	How many ways can you order 4
Permutations	available choices each time.	numbered balls?
without		
Repetition	One you have chosen something, you	$4 \times 3 \times 2 \times 1 = 24$
	cannot choose it again.	
5. Factorial	The factorial symbol '!' means to multiply	$4! = 4 \times 3 \times 2 \times 1 = 24$
	a series of descending integers to 1.	
	Note: $0! = 1$	
6. Product	If there are x ways of doing something and	To choose one of $\{A, B, C\}$ and one of
Rule for	y ways of doing something else, then there	$\{X, Y\}$ means to choose one of
Counting	are xy ways of performing both.	$\{X, Y\}$ means to choose one of $\{X, AY, BX, BY, CX, CY\}$
Counting	are ny ways of performing both.	{AA, AI, DA, DI, CA, CI }
		The rule says that there are $3 \times 2 = 6$
		-
		choices.

Topic: Probability (Trees and Venns)

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
1. Tree	Tree diagrams show all the possible	Bag A Bag B
Diagrams	outcomes of an event and calculate their	$\frac{1}{-}$ red
C	probabilities.	1 3
	1	1 red
	All branches must add up to 1 when	2 black
	adding downwards.	< ³ 1
	This is because the probability of	red
	something not happening is 1 minus the	4 black
	probability that it does happen.	2
		- black
	Multiply going across a tree diagram.	
	Add going down a tree diagram.	
2. Independent	The outcome of a previous event does not	An example of independent events
Events	influence/affect the outcome of a second	could be <u>replacing</u> a counter in a bag
	event.	after picking it.
3. Dependent	The outcome of a previous event does	An example of dependent events could
Events	influence/affect the outcome of a second	be not replacing a counter in a bag after
	event.	picking it.
		' <u>Without replacement</u> '
4. Probability	P(A) refers to the probability that event A	P(Red Queen) refers to the probability
Notation	will occur.	of picking a Red Queen from a pack of
		cards.
	P(A') refers to the probability that event	P(Blue') refers to the probability that
	A will <u>not</u> occur.	you do not pick Blue.
	$P(A \cup B)$ refers to the probability that	$P(Blonde \cup Right Handed)$ refers to the
	event A <u>or</u> B <u>or</u> both will occur.	probability that you pick someone who
		is Blonde or Right Handed or both.
	$P(A \cap B)$ refers to the probability that	$P(Blonde \cap Right Handed)$ refers to the
	<u>both</u> events A and B will occur.	probability that you pick someone who
C X7		is both Blonde and Right Handed.
5. Venn	A Venn Diagram shows the relationship	
Diagrams	between a group of different things and	
	how they overlap.	
	Van mary ha asked to the de V D'	
	You may be asked to shade Venn Diagrams	$(A \cap B)$ ' $(A \cup B)$ '
	as shown below and to the right.	
	$A \cup B$ $A \cap B$	
	The Union The Intervention	
	The Union The Intersection 'A or B or Both' 'A and B'	

		$A \cap B$ $A \cap B$ $A \cap B'$ $A \cap B'$ B B
6. Venn Diagram Notation	E means 'element of a set' (a value in the set) { } means the collection of values in the set. ξ means the 'universal set' (all the values to consider in the question)	Set A is the even numbers less than 10. $A = \{2, 4, 6, 8\}$ Set B is the prime numbers less than 10. $B = \{2, 3, 5, 7\}$
	A' means 'not in set A' (called complement) A ∪ B means 'A or B or both' (called Union) A ∩ B means 'A and B (called Intersection)	A U B = $\{2, 3, 4, 5, 6, 7, 8\}$ A \cap B = $\{2\}$
7. AND rule for Probability	When two events, A and B, are independent:	What is the probability of rolling a 4 and flipping a Tails?
	$P(A \text{ and } B) = P(A) \times P(B)$	$P(4 \text{ and } Tails) = P(4) \times P(Tails)$ $= \frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$
8. OR rule for Probability	When two events, A and B, are mutually exclusive:	What is the probability of rolling a 2 or rolling a 5?
	P(A or B) = P(A) + P(B)	$P(2 \text{ or } 5) = P(2) + P(5)$ $= \frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$
9. Conditional Probability	The probability of an event A happening, given that event B has already happened. With conditional probability, check if the numbers on the second branches of a tree diagram changes. For example, if you have 4 red beads in a bag of 9 beads and pick a red bead on the first pick, then there will be 3 red beads left out of 8 beads on the second pick.	1st Bead 1st Bead 1st Bead 1st Bead 2nd Bead 3 8 Red 5 9 Green 4 8 Red 4 9 Green 4 8 Green 4 8 Green

Topic: Ratio

57 F

Topic/Skill	Definition/Tips	Example
1. Ratio	Ratio compares the size of one part to	3:1
	another part.	
2 Duen ention	Written using the ':' symbol.	In a close with 12 hours and 0 sinks the
2. Proportion	Proportion compares the size of one part to the size of the whole .	In a class with 13 boys and 9 girls, the $13 + 13$
	the size of the whole.	proportion of boys is $\frac{1}{22}$ and the
	Usually written as a fraction.	proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$
3. Simplifying	Divide all parts of the ratio by a common	5:10 = 1:2 (divide both by 5)
Ratios	factor.	14:21 = 2:3 (divide both by 7)
4. Ratios in the	Divide both parts of the ratio by one of the	$5 \cdot 7 = 1 \cdot \frac{7}{2}$ in the form $1 \cdot n$
form $1: n$ or	numbers to make one part equal 1.	$5:7 = 1:\frac{7}{5}$ in the form $1:n$
n: 1		$5:7 = \frac{5}{7}:1$ in the form n : 1
7 01 · · ·		
5. Sharing in a Ratio	 Add the total parts of the ratio. Divide the amount to be shared by this 	Share $\pounds 60$ in the ratio $3:2:1$.
Katio	value to find the value of one part.	3 + 2 + 1 = 6
	3. Multiply this value by each part of the	$60 \div 6 = 10$
	ratio.	3 x 10 = 30, 2 x 10 = 20, 1 x 10 = 10
		$\pounds 30: \pounds 20: \pounds 10$
	Use only if you know the total .	X 2
6. Proportional	Comparing two things using multiplicative	
Reasoning	reasoning and applying this to a new situation.	30 minutes 60 pages
	Situation.	? minutes 150 pages
	Identify one multiplicative link and use this	
	to find missing quantities.	X 2
7. Unitary	Finding the value of a single unit and then	3 cakes require 450g of sugar to make.
Method	finding the necessary value by multiplying	Find how much sugar is needed to
	the single unit value.	make 5 cakes.
		3 cakes = 450 g
		So 1 cake = $150g (\div by 3)$
		So 5 cakes = $750 \text{ g} (x \text{ by } 5)$
8. Ratio	Find what one part of the ratio is worth	Money was shared in the ratio 3:2:5
already shared	using the unitary method .	between Ann, Bob and Cat. Given that
		Bob had £16, found out the total
		amount of money shared.
		$\pounds 16 = 2$ parts
		So $\pounds 8 = 1$ part
		$3+2+5=10$ parts, so $8 \ge 10=$ £80
9. Best Buys	Find the unit cost by dividing the price by	8 cakes for $\pounds 1.28 \rightarrow 16p$ each (÷by 8)
	the quantity. The lowest number is the best value.	13 cakes for £2.05 \rightarrow 15.8p each (÷by
	The lowest number is the dest value.	13) Pack of 13 cakes is best value.
	<u> </u>	I dok of 15 cakes is best value.

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage.	$y \downarrow y = kx$
	If y is directly proportional to x, this can be written as $y \propto x$ An equation of the form $y = kx$ represents	x
	direct proportion, where k is the constant of proportionality.	
2. Inverse Proportion	If two quantities are inversely proportional, as one increases , the other decreases by the same percentage .	$y = \frac{k}{x}$
	If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	x
	An equation of the form $y = \frac{k}{x}$ represents inverse proportion.	+
3. Using proportionality formulae	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$ Inverse : $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	p is directly proportional to q. When $p = 12$, $q = 4$. Find p when $q = 20$.
	 Solve to find k using the pair of values in the question. Rewrite the equation using the k you 	1. $p = kq$ 12 = k x 4 so k = 3
	have just found.3. Substitute the other given value from the question in to the equation to find the	2. p = 3q 3. p = 3 x 20 = 60, so p = 60
	missing value.	$3 \cdot p = 3 \times 20 = 60$, so $p = 60$

Topic: Compound Measures

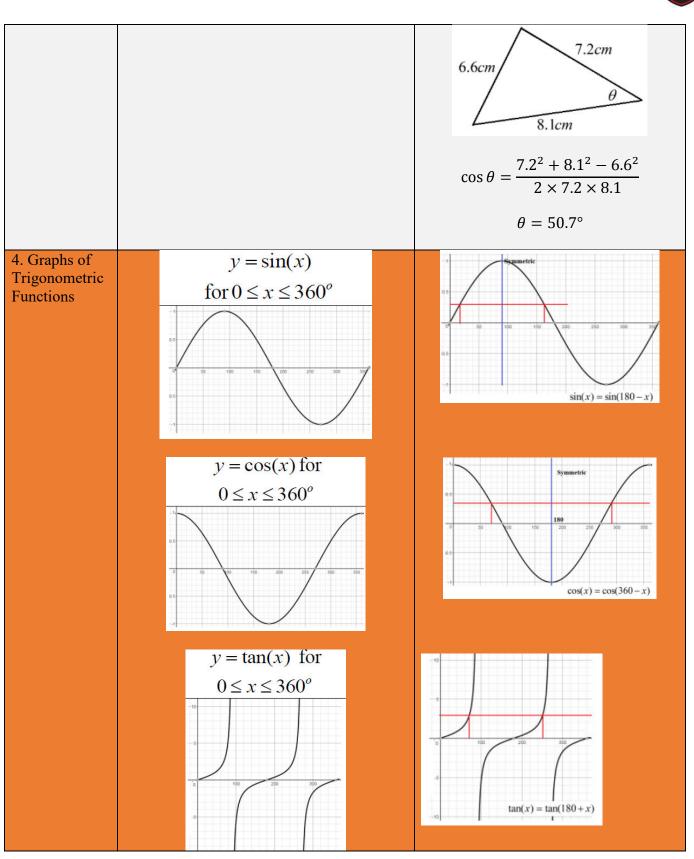
Topic/Skill	Definition/Tips	Example
1. Metric	A system of measures based on:	1kilometres = 1000 metres
System		1 metre = 100 centimetres
	- the metre for length	$1 \ centimetre = 10 \ millimetres$
	- the kilogram for mass	
	- the second for time	1 kilogram = 1000 grams
	Length: mm, cm, m, km	
	Mass: mg, g, kg	
	Volume: ml, cl, l	
2. Imperial	A system of weights and measures	1lb = 16 ounces
System	originally developed in England, usually	1 foot = 12 inches
-	based on human quantities	1 gallon = 8 pints
	Length: inch, foot, yard, miles	
	Mass: lb, ounce, stone	
	Volume: pint, gallon	
3. Metric and	Use the unitary method to convert	5 miles \approx 8 kilometres
Imperial Units	between metric and imperial units.	1 gallon ≈ 4.5 litres
r	· · · · · · · · · · · · · · · · · · ·	$2.2 \text{ pounds} \approx 1 \text{ kilogram}$
		1 inch = 2.5 centimetres
4. Speed,	Speed = Distance ÷ Time	Speed = 4mph
Distance, Time	Distance = Speed x Time	Time = 2 hours
,	Time = Distance ÷ Speed	
		Find the Distance.
	D S T	$D = S \times T = 4 \times 2 = 8$ miles
	Remember the correct units.	
5. Density,	$Density = Mass \div Volume$	Density = 8kg/m^3
Mass, Volume	Mass = Density x Volume	Mass = 2000g
inass, vorunie	Volume = Mass ÷ Density	111111111111111111111111111111111111111
		Find the Volume.
	D V	$V = M \div D = 2 \div 8 = 0.25m^3$
	Remember the correct units.	
6. Pressure,	Pressure = Force ÷ Area	Pressure = 10 Pascals
Force, Area	Force = Pressure x Area	$Area = 6cm^2$
	Area = Force ÷ Pressure	
		Find the Force

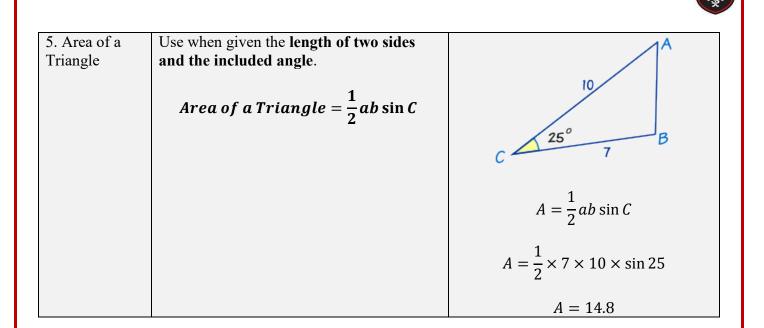
	F p X A	$F = P \times A = 10 \times 6 = 60 N$
	Remember the correct units.	
7. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km)

 সন্ধ্রা সন্ধ্রা

Topic: Congruence and Similarity

/ **भ** ्रह्य


on/Tips	
re congruent if they are identical -	Example
ape and same size.	
	Scm _ F
	C D 75' 61'
	A 61 73'/8cm
Side, Side, Side)	
(Right angle, Hypotenuse, Side)	E
Side, Angle, Side)	BC = DF
(Angle, Side, Angle) or AAS	$\angle ABC = \angle EDF$
	$\angle ACB = \angle EFD$
es not prove congruency.	The two triangles are congruent by AAS.
re similar if they are the same	Congruent by AAS.
portion of the matching sides must	
	24
i 8	16
napes.	10 15
a scale factor, divide a length on	
0	
shape.	Scale Factor = $15 \div 10 = 1.5$
he scale factor.	2cm 3cm
	J. M
ind a missing length.	4.5cm
5 Iact01.	N N
e finding a missing length on the	
shape you will need to divide by	Scale Factor = $3 \div 2 = 1.5$
e factor.	$x = 4.5 \times 1.5 = 6.75cm$
that two triangles are similar,	У
at:	85°
rea sides are in the same	40°
	x z
	Y A
r included angle is the same	85°
ree angles are equal	
	55°
	x z
	ape and same size. an be rotated or reflected but still uent. of proving that two triangles are nt: Side, Side, Side) (Right angle, Hypotenuse, Side) Side, Angle, Side) (Angle, Side, Angle) or AAS as not prove congruency. The similar if they are the same ut different sizes. portion of the matching sides must me, meaning the ratios of nding sides are all equal. o of corresponding sides of two hapes. a scale factor, divide a length on the by the corresponding length on shape. he scale factor. ply or divide the corresponding nd a missing length. e finding a missing length on the ape you will need to multiply by factor. that two triangles are similar, tt: pree sides are in the same on ides are in the same proportion, included angle is the same


Topic: Trigonometry

Topic/Skill	Defini	tion/Ti	ins				Example
1. Exact		0°	30°	45°	60°	90°	
Values for	sin	0	1	$\sqrt{2}$	$\sqrt{3}$	1	30'
Angles in		Ŭ	2				45
Trigonometry	cos	1	$\sqrt{3}$	$\frac{2}{\sqrt{2}}$	$\begin{array}{c c} 2\\ 1\\ \hline 2 \end{array}$	0	1 $\sqrt{2}$ $\sqrt{3}$ 2
	005	1		$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	U	
	tan	0	2	2			45* 60*
	lan	U		1	$\sqrt{3}$		1 1
2. Sine Rule	Licow	ith non	$\sqrt{3}$	ngle t	nionala		N
2. Sille Kule			right a				85 53
		angles			1005 2	siucs	85 5.2 <i>cm</i>
	and 2	angres	•				
	For mi	issing s	ide:				45
		8 -		_ b			<u> </u>
			$\frac{a}{\sin A}$	$= \frac{1}{\sin^2}$			$\frac{x}{-1} = \frac{5.2}{-1}$
			51111		2		$\sin 85$ sin 46
	For mi	issing a					F 2 x cin 9F
			sin A	_ sin	B		$x = \frac{5.2 \times \sin 85}{\sin 46} = 3.75cm$
			a	b			sin 46
							~
	These	:	h :		o (xxx10 o		/85
			tial ans		e (when	re there	1.9m
		o poten	tiai alls	weisj			
			В				2.4m
				1			146841 L 7475 2084
				11	1		$\sin\theta$ sin 85
			10cm	1	1		1.9 = 2.4
			/	6cm ¹	6c1	n	
			46°	1	1		$\sin \theta = \frac{1.9 \times \sin 85}{2.4} = 0.789$
		$A^{\mathbf{Z}}$		-	-C		2.4
						find one,	$\theta = \sin^{-1}(0.789) = 52.1^{\circ}$
					swer fr	om 180	
2 C. P 1			ner ansv				~ ~ ~
3. Cosine Rule			right a				85 9.6
	and 1		questio		1005 5	siues	7.8
	anu i	angie.					
	For mi	issing s	ide:				X
			$b^{2} + b^{2}$	$c^2 - 2i$	bccos	4	
							$x^2 = 9.6^2 + 7.8^2 - (2 \times 9.6 \times 7.8)$
	For mi	issing a					$\times \cos 85$)
			$s A = \frac{b}{a}$	$p^2 + c^2$	$-a^2$		x = 11.8
		CO	SA = -	2 <i>b</i>	С		

Topic: Vectors

Topic/Skill	Definition/Tips	Example
1. Translation	Translate means to move a shape . The shape does not change size or orientation .	$\begin{array}{c} Q \\ Q \\ 3 \\ 3 \\ 7 \\ P \\ Q \\ 3 \\ 4 \\ 4 \\ 4 \\ P' \\ \end{array}$
2. Vector Notation	A vector can be written in 3 ways: a or \overrightarrow{AB} or $\begin{pmatrix} 1\\ 3 \end{pmatrix}$	
3. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{-5}$ means '1 left, 5 down'
4. Vector	A vector is a quantity represented by an arrow with both direction and magnitude. $\overrightarrow{AB} = -\overrightarrow{BA}$	$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
5. Magnitude	Magnitude is defined as the length of a vector.	3 Magnitude (length) can be calculated using Pythagoras Theorem: 3² + 4² = 25 J25 = 5
6. Equal Vectors	If two vectors have the same magnitude and direction , they are equal .	
7. Parallel Vectors	Parallel vectors are multiples of each other.	2 a+b and 4 a +2 b are parallel as they are multiple of each other.

8. Collinear Vectors	Collinear vectors are vectors that are on the same line. To show that two vectors are collinear, show that one vector is a multiple of the other (parallel) AND that both vectors share a point.	A
9. Resultant Vector	The resultant vector is the vector that results from adding two or more vectors together. The resultant can also be shown by lining up the head of one vector with the tail of the other.	if $\underline{\mathbf{a}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$ and $\underline{\mathbf{b}} = \begin{pmatrix} 2 \\ -2 \end{pmatrix}$ then $\underline{\mathbf{a}} + \underline{\mathbf{b}} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 2 \end{pmatrix}$
10. Scalar of a Vector	A scalar is the number we multiply a vector by.	Example: 3a + 2b = $= 3\binom{2}{1} + 2\binom{4}{-1}$ $= \binom{6}{3} + \binom{8}{-2}$ $= \binom{14}{1}$
11. Vector Geometry	$\overrightarrow{OA} = a \overrightarrow{AO} = -a$ $\overrightarrow{OA} = a \overrightarrow{AO} = -a$ $\overrightarrow{OB} = b \overrightarrow{BO} = -b$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB} = -a + b = b - a$ $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OA} = -b + a = a - b$	Example 1: X is the midpoint of AB . Find \overrightarrow{OX} Answer: Draw X on the original diagram $\overrightarrow{Answer:}$ Draw X on the original diagram $\overrightarrow{Answer:}$ Draw X on the original diagram Now build up a journey. You could up a journey. You could use $\overrightarrow{OX} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$. This will give: $\overrightarrow{OX} = a + \frac{1}{2}(b-a)$. This will simplify to $\frac{1}{2}a + \frac{1}{2}b$ or $\frac{1}{2}(a+b)$

		Topic: Circle Theorems
Topic/Skill	Definition/Tips	Example
Circle Theorem 1	Angles in a semi-circle have a right angle at the circumference.	38
		$y = 90^{\circ}$ $x = 180 - 90 - 38 = 52^{\circ}$
Circle Theorem 2	Opposite angles in a cyclic quadrilateral add up to 180°. $a+c=180^{\circ}$ $b+d=180^{\circ}$	$x = 180 - 83 = 97^{\circ}$ $y = 180 - 92 = 88^{\circ}$
Circle Theorem 3	The angle at the centre is twice the angle at the circumference.	$x = 104 \div 2 = 52^{\circ}$
Circle Theorem 4	Angles in the same segment are equal.	$x = 42^{\circ}$ $y = 31^{\circ}$
Circle Theorem 5	A tangent is perpendicular to the radius at the point of contact.	y = 5cm (Pythagoras' Theorem)

Circle	Tangents from an external point at equal	
Theorem 6	in length.	4cm
		$x = 90^{\circ}$
Circle	Alternate Segment Theorem	\frown
Theorem 7		x . y 52°
		$\begin{array}{l} x = 52^{\circ} \\ y = 38^{\circ} \end{array}$

Higher Only Topics

Tibshelf Community School