

Topic/Skill	Definition/Tips	Example
1. Types of Angles	Acute angles are less than 90°. Right angles are exactly 90°. Obtuse angles are greater than 90° but less than 180°. Reflex angles are greater than 180° but less than 360°.	Acute Right Obtuse Reflex
2. Angle Notation	Can use one lower-case letters, eg. θ or x Can use three upper-case letters, eg. BAC	$A = \theta$ C
3. Angles at a Point	Angles around a point add up to 360°.	$a+b+c+d=360^{\circ}$
4. Angles on a Straight Line	Angles around a point on a straight line add up to 180°.	$x = y$ $x + y = 180^{\circ}$
5. Opposite Angles	Vertically opposite angles are equal.	$\frac{x}{y}$
6. Alternate Angles	Alternate angles are equal. They look like Z angles, but never say this in the exam.	<i>y x x y</i>
7. Corresponding Angles	Corresponding angles are equal. They look like F angles, but never say this in the exam.	$\frac{y}{x}$
8. Co-Interior Angles	Co-Interior angles add up to 180°. They look like C angles, but never say this in the exam.	y/x x/y

9. Angles in a	4 1 1 4 1 11 4 4000	A
I	Angles in a triangle add up to 180°.	, ·
Triangle		800
		45 °
		550
		C
10. Types of	Right Angle Triangles have a 90° angle in.	Λ
Triangles	Isosceles Triangles have 2 equal sides and	
	2 equal base angles.	
	Equilateral Triangles have 3 equal sides	
	and 3 equal angles (60°).	/x x
	1 0 1	Right Angled Isosceles
	Scalene Triangles have different sides and	4
	different angles.	
		60
	Base angles in an isosceles triangle are	
	equal.	60° 60°
	-	Equilateral Scalene
11 4 1 '	1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2	softmers at Sellette
11. Angles in a	Angles in a quadrilateral add up to 360°.	
Quadrilateral		75°
		/ - 120
		65° 93°
12 D 1	A 4 D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D t 1 H D W't
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the	
	angles are equal.	
1		
14 Names of	3 sided - Triangle	
14. Names of	3-sided = Triangle	
14. Names of Polygons	4-sided = Quadrilateral	
	4-sided = Quadrilateral 5-sided = Pentagon	Triangle Quadrilateral Pentagon Hexagon
	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon	Triangle Quadrilateral Pentagon Hexagon
	4-sided = Quadrilateral 5-sided = Pentagon	Triangle Quadrilateral Pentagon Hexagon
	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon	Triangle Quadrilateral Pentagon Hexagon
	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon	2000
	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon	Triangle Quadrilateral Pentagon Hexagon Heptagon Octagon Nonagon Decagon
Polygons	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Heptagon Octagon Nonagon Decagon
Polygons 15. Sum of	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$	Heptagon Octagon Nonagon Decagon Sum of Interior Angles in a Decagon =
Polygons	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Heptagon Octagon Nonagon Decagon
Polygons 15. Sum of Interior Angles	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10-2) \times 180 = 1440^{\circ}$
Polygons 15. Sum of Interior Angles 16. Size of	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$	Sum of Interior Angles in a Decagon = $(10-2) \times 180 = 1440^{\circ}$ Size of Interior Angle in a Regular
Polygons 15. Sum of Interior Angles 16. Size of Interior Angle	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides.	Size of Interior Angle in a Regular Pentagon = Octagon Nonagon Decagon = $(10-2) \times 180 = 1440^{\circ}$
Polygons 15. Sum of Interior Angles 16. Size of Interior Angle in a Regular	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides. $\frac{(n-2) \times 180}{n}$	Size of Interior Angle in a Regular Pentagon = Octagon Nonagon Decagon = $(10-2) \times 180 = 1440^{\circ}$
Polygons 15. Sum of Interior Angles 16. Size of Interior Angle	4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon 7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon $(n-2) \times 180$ where n is the number of sides. $(n-2) \times 180$	Sum of Interior Angles in a Decagon = $(10-2) \times 180 = 1440^{\circ}$ Size of Interior Angle in a Regular

	180 – Size of Exterior Angle	
17. Size of Exterior Angle in a Regular Polygon	$\frac{360}{n}$ You can also use the formula: $180 - Size \ of \ Interior \ Angle$	Size of Exterior Angle in a Regular Octagon = $\frac{360}{8} = 45^{\circ}$

Topic: Coordinates and Linear Graphs

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs. The first term is the x-coordinate (movement across). The second term is the y-coordinate (movement up or down)	A: (4,7) B: (-6,-3)
2. Midpoint of	Method 1: add the x coordinates and	Find the midpoint between (2,1) and
a Line	divide by 2, add the y coordinates and	(6,9)
	divide by 2	2+6 4 11+9 5
	Method 2: Sketch the line and find the	$\frac{2+6}{2} = 4$ and $\frac{1+9}{2} = 5$
	values half way between the two x and two y values.	So, the midpoint is (4,5)
3. Linear	Straight line graph.	Example:
Graph	The general equation of a linear graph is $y = mx + c$	Other examples: $x = y$ $y = 4$
	where m is the gradient and c is the yintercept.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	The equation of a linear graph can contain an x-term , a y-term and a number .	y + x = 10 $2y - 4x = 12$
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x +3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form $y = mx + c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the x term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the y term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
	Gradient = $\frac{Change \ in \ y}{Change \ in \ x} = \frac{Rise}{Run}$ The gradient can be positive (sloping upwards) or negative (sloping downwards)	Gradient = -3/1 =-3 4 -3 -3 1 1 1
6. Finding the Equation of a Line given a point and a gradient	Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $y = mx + c$ $7 = 4 \times 2 + c$ $c = -1$ $y = 4x - 1$
7. Finding the Equation of a Line given two points	Use the two points to calculate the gradient. Then repeat the method above using the gradient and either of the points.	$y = 4x - 1$ Find the equation of the line passing through (6,11) and (2,3) $m = \frac{11 - 3}{6 - 2} = 2$ $y = mx + c$ $11 = 2 \times 6 + c$ $c = -1$ $y = 2x - 1$
8. Parallel Lines	If two lines are parallel , they will have the same gradient . The value of m will be the same for both lines.	Are the lines $y = 3x - 1$ and $2y - 6x + 10 = 0$ parallel? Answer: Rearrange the second equation in to the form $y = mx + c$ $2y - 6x + 10 = 0 \rightarrow y = 3x - 5$ Since the two gradients are equal (3), the lines are parallel.

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
Topic/Skill 1. Real Life Graphs	Definition/Tips Graphs that are supposed to model some real-life situation. The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning.	Example 40 38 36 34 32 30 28 28 26 24 12 20 18 16 14 12 10 B 64 20 Days (d) A graph showing the cost of hiring a ladder for various numbers of days.
		The gradient shows the cost per day. It costs £3/day to hire the ladder. The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is £7.
2. Conversion Graph	A line graph to convert one unit to another . Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis.	Conversion graph miles \Leftrightarrow kilometres km 20 16 12 8 4 0 5 10 miles15
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	8 km = 5 miles

Topic: Rates of Change

Topic/Skill	Definition/Tips	Example
1. Rate of Change	The rate of change at a particular instant in time is represented by the gradient of the tangent to the curve at that point.	70 60 (w) 40 10 10 0 2 4 6 8 Time (s) Negative rate of change of change 10 0 2 4 6 8 Time (s)
2. Distance- Time Graphs	You can find the speed from the gradient of the line (Distance ÷ Time) The steeper the line, the quicker the speed. A horizontal line means the object is not moving (stationary).	Distance (Km) 3. Time (Hours)
3. Velocity- Time Graphs	You can find the acceleration from the gradient of the line (Change in Velocity ÷ Time) The steeper the line, the quicker the acceleration. A horizontal line represents no acceleration, meaning a constant velocity. The area under the graph is the distance.	Velocity (m/s) 2 2 3 4 5 6 7 8 5 10 Time (Seconds)

Topic: Properties of Polygons

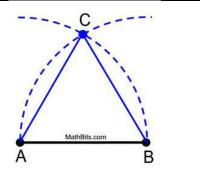
		-
PATE	*	R. Ta
L	Œ	
	×	"

Topic/Skill	Definition/Tips	Example
1. Square	Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	Rotational symmetry of order four	
2. Rectangle	• Two pairs of equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	1 1
	angles	
	• Two lines of symmetry	//
	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	
	Diagonally opposite angles are equal	× ×
	• Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Two lines of symmetry	~
	• Rotational symmetry of order two	
4.	• Two pairs of equal sides	//
Parallelogram	 Diagonally opposite angles are equal 	
	 Opposite sides parallel 	<i>f</i>
	• Diagonals bisect each other, not at right	
	angles	<i>──────</i>
	• No lines of symmetry	
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	*
	length	
	• One pair of diagonally opposite angles	
	are equal (where different length sides	\ \ \ \ \ \
	meet)	
	• Diagonals intersect at right angles, but	v
	do not bisect	
	• One line of symmetry	
6 Tronggiyan	• No rotational symmetry	
6. Trapezium	• One pair of parallel sides	
	No lines of symmetry	
	No rotational symmetry	
	Special Case: Isosceles Trapeziums have	
	<u> </u>	
	one line of symmetry.	

Topic: 2D Representations of 3D Shapes

Topic/Skill	Definition/Tips	Example
1. Net	A pattern that you can cut and fold to make a model of a 3D shape.	1 2 3 4 5 6
2. Properties of	Faces = flat surfaces	A cube has 6 faces, 12 edges and 8
Solids	Edges = sides/lengths Vertices = corners	vertices.
3. Plans and	This takes 3D drawings and produces 2D	Original 3D
Elevations	drawings. Plan View: from above Side Elevation: from the side Front Elevation: from the front	Drawing
		2D Drawings Plan Front Elevation Side Elevation
4. Isometric Drawing	A method for visually representing 3D objects in 2D.	2cm 2cm 2cm

Topic: Loci and Constructions



Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	•
2.	Perpendicular lines are at right angles.	
Perpendicular	There is a 90° angle between them.	
Terpendicular	There is a 70° ungle between them.	
3. Vertex	A corner or a point where two lines meet.	vertex
		c
4. Constructing	1. Draw the base of the triangle using a	В
Triangles	ruler.	
(Side, Side,	2. Open a pair of compasses to the width of	
Side)	one side of the triangle.	
,	3. Place the point on one end of the line and	
	draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point where the arcs intersect.	
5. Constructing	1. Draw the base of the triangle using a	Α
Triangles	ruler.	\sim
(Side, Angle,	2. Measure the angle required using a	dam/
Side)	protractor and mark this angle.	4cm/
	3. Remove the protractor and draw a line of	
	the exact length required in line with the	B \(\frac{50^\circ}{7cm} \)
	angle mark drawn.	
	4. Connect the end of this line to the other end of the base of the triangle.	
6. Constructing	1. Draw the base of the triangle using a	X
Triangles	ruler.	Î
(Angle, Side,	2. Measure one of the angles required using	
Angle)	a protractor and mark this angle.	
	3. Draw a straight line through this point	
	from the same point on the base of the	y <u>/42°</u> 51° Z
	triangle.	8.3cm
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	

7. Constructing
an Equilateral
Triangle (also
makes a 60°
angle)

- 1. Draw the base of the triangle using a ruler.
- 2. Open the pair of compasses to the exact length of the side of the triangle.
- 3. Place the sharp point on one end of the line and draw an arc.
- 4. Repeat this from the other end of the line.
- 5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.

Topic: Congruence and Similarity

Topic/Skill	Definition/Tips	Example
1. Congruent Shapes	Shapes are congruent if they are identical - same shape and same size .	
	Shapes can be rotated or reflected but still be congruent.	
2. Congruent Triangles	 4 ways of proving that two triangles are congruent: 1. SSS (Side, Side, Side) 2. RHS (Right angle, Hypotenuse, Side) 	$A = \begin{bmatrix} C & D & Scm \\ TS & Scm \end{bmatrix}$ $B = \begin{bmatrix} C & D & F \\ TS & Scm \end{bmatrix}$ E
	3. SAS (Side, Angle, Side) 4. ASA (Angle, Side, Angle) or AAS	$BC = DF$ $\angle ABC = \angle EDF$
	ASS does not prove congruency.	∠ACB = ∠EFD ∴ The two triangles are congruent by AAS.
3. Similar Shapes	Shapes are similar if they are the same shape but different sizes.	
	The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal.	

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras'	For any right angled triangle:	Finding a Shorter Side
Theorem	$a^2 + b^2 = c^2$	y 10 subtract:
		$a = y, b = 8, c = 10$ $a^{2} = c^{2} - b^{2}$ $y^{2} = 100 - 64$ $y^{2} = 36$ $y = 6$
	Used to find missing lengths .	y = 6
	a and b are the shorter sides, c is the	
	hypotenuse (longest side).	

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Real Horse 1500 mm high 2000 mm long Scale 1:10 Drawn Horse 150 mm high 2000 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life.	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) 	The bearing of <u>B</u> from <u>A</u>
	Look out for where the bearing is measured <u>from</u> .	The bearing of \underline{A} from \underline{B}
4. Compass Directions	You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.	NW NE W
	Bearings: $NE = 045^{\circ}$, $W = 270^{\circ}$ etc.	SW SE