Topic: Algebra

		Algebra
Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables An identity uses the symbol: ≡	$2x \equiv x + x$
4. Formula	Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 3x + 4 - x ² + 2x - 1 = 5x - x ² + 3
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x^2x^2=8$, not 2x3=6
8. $p + p + p$	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by ' taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Equations and Formulae

Topic/Skill	Definition/Tips	Example
1. Solve	To find the answer /value of something	Solve $2x - 3 = 7$
2. Inverse	Use inverse operations on both sides of the equation (balancing method) until you find the value for the letter. Opposite	Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction.
		The inverse of multiplication is division.
3. Rearranging Formulae	Use inverse operations on both sides of the formula (balancing method) until you find the expression for the letter.	Make x the subject of $y = \frac{2x-1}{z}$ Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
4. Writing Formulae	Substitute letters for words in the question.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
5. Substitution	Replace letters with numbers.	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	Be careful of $5x^2$. You need to square first, then multiply by 5.	2. $3a - 2b = 3 \times 3 - 2 \times 2 = 5$ 3. $7b^2 - 5 = 7 \times 2^2 - 5 = 23$

Topic: Iteration

ी 🏶 अङ्ग

Topic/Skill	Definition/Tips	Example
1. Iteration	The act of repeating a process over and over again, often with the aim of approximating a desired result more closely. Recursive Notation: $x_{n+1} = \sqrt{3x_n + 6}$	$x_{1} = 4$ $x_{2} = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_{3} = \sqrt{3 \times 4.242640} \dots + 6$ $= 4.357576 \dots$
2. Iterative Method	 To create an iterative formula, rearrange an equation with more than one x term to make one of the x terms the subject. You will be given the first value to substitute in, often called x₁. Keep substituting in your previous answer until your answers are the same to a certain degree of accuracy. This is called converging to a limit. Use the 'ANS' button on your calculator to keep substituting in the previous answer. 	Use an iterative formula to find the positive root of $x^2 - 3x - 6 = 0$ to 3 decimal places. $x_1 = 4$ Answer: $x^2 = 3x + 6$ $x = \sqrt{3x} + 6$ So $x_{n+1} = \sqrt{3x_n + 6}$ $x_1 = 4$ $x_2 = \sqrt{3 \times 4 + 6} = 4.242640 \dots$ $x_3 = \sqrt{3 \times 4.242640} \dots + 6$ $= 4.357576 \dots$ Keep repeating $x_7 = 4.372068 \dots = 4.372 (3dp)$ $x_8 = 4.372208 \dots = 4.372 (3dp)$ So answer is $x = 4.372 (3dp)$

Topic: Sequences

-		
1.	¥	e.k
y	ട്ട്	
	\mathbf{x}	1
	JIT Y	। जूष

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	2, 3, 6, 11 is a inical sequence
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the third term of the sequence.
3. Term-to- term rule	A rule which allows you to find the next term in a sequence if you know the previous term .	First term is 2. Term-to-term rule is 'add 3' Sequence is: 2, 5, 8, 11
4. nth term	 A rule which allows you to calculate the term that is in the nth position of the sequence. Also known as the 'position-to-term' rule. n refers to the position of a term in a sequence. 	nth term is $3n - 1$ The 100 th term is $3 \times 100 - 1 = 299$
5. Finding the nth term of a linear sequence	 Find the difference. Multiply that by n. Substitute n = 1 to find out what number you need to add or subtract to get the first number in the sequence. 	Find the nth term of: 3, 7, 11, 15 1. Difference is +4 2. Start with $4n$ 3. $4 \times 1 = 4$, so we need to subtract 1 to get 3. nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34 An example of a Fibonacci-type sequence is: 4, 7, 11, 18, 29
7. Geometric Sequence	A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio , r .	An example of a geometric sequence is: 2, 10, 50, 250 The common ratio is 5 Another example of a geometric sequence is: 81, -27, 9, -3, 1 The common ratio is $-\frac{1}{3}$
8. Quadratic Sequence	 A sequence of numbers where the second difference is constant. A quadratic sequence will have a n² term. 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
9. nth term of a	ar^{n-1}	The nth term of 2, 10, 50, 250 Is
geometric sequence	where a is the first term and r is the common ratio	$2 \times 5^{n-1}$

10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40	
a quadratic	2. Halve the second difference and multiply		
sequence	this by n^2 .	Answer:	
	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =	
	expression so far.	$2n^2$	
	4. Subtract this set of numbers from the		
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40	
	the question.	$2n^2$ 2, 8, 18, 32, 50	
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10	
	6. Combine the nth terms to find the overall		
	nth term of the quadratic sequence.	Nth term of this set of numbers is	
		-3n + 5	
	Substitute values in to check your nth term		
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$	
11. Triangular	The sequence which comes from a pattern	1 3 6 10	
numbers	of dots that form a triangle.		
	1, 3, 6, 10, 15, 21		

Topic: Properties of Polygons

Topic/Skill	Definition/Tips	Example
1. Square	• Four equal sides	
	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	
	• Four lines of symmetry	
	 Rotational symmetry of order four 	
2. Rectangle	• Two pairs of equal sides	
2	• Four right angles	
	Opposite sides parallel	
	• Diagonals bisect each other, not at right	
	angles	
	• Two lines of symmetry	
	• Rotational symmetry of order two	
3. Rhombus	• Four equal sides	<u>^</u>
	• Diagonally opposite angles are equal	\checkmark
	• Opposite sides parallel	
	• Diagonals bisect each other at right	
	angles	\sim \times
	• Two lines of symmetry	\sim
	• Rotational symmetry of order two	
4.	• Two pairs of equal sides	
Parallelogram	• Diagonally opposite angles are equal	
i urunero grunn	• Opposite sides parallel	\uparrow
	• Diagonals bisect each other, not at right	T T
	angles	
	• No lines of symmetry	··· //
	• Rotational symmetry of order two	
5. Kite	• Two pairs of adjacent sides of equal	\land
	length	× ×
	• One pair of diagonally opposite angles	
	are equal (where different length sides	\rightarrow
	meet)	
	• Diagonals intersect at right angles, but	\sim
	do not bisect	
	• One line of symmetry	
	• No rotational symmetry	
6. Trapezium	One pair of parallel sides	
1	 No lines of symmetry 	
	No rotational symmetry	
	- ito i otational symmetry	

Special Case: Isosceles Trapeziums have one line of symmetry.

Tibshelf Community School

Topic: Perimeter and Area

1²⁵ 1

Topic/Skill	Definition/Tips	Example
1. Perimeter	The total distance around the outside of a	8 cm
	shape.	
		5 cm
	Units include: <i>mm</i> , <i>cm</i> , <i>m</i> etc.	
2. 4		P = 8 + 5 + 8 + 5 = 26cm
2. Area	The amount of space inside a shape.	
	Units include: mm^2 , cm^2 , m^2	
3. Area of a	Length x Width	9 cm
Rectangle		4 cm
4. Area of a	Base x Perpendicular Height	$A = 36cm^2$
Parallelogram	Not the slant height.	
6		4cm 3cm
		$A = 21cm^2$
5. Area of a	Base x Height ÷ 2	A = 210m
Triangle		9 4 5
		$A = 24cm^2$
6. Area of a	Split in to two triangles and use the	
Kite	method above.	
		2.2m
		≪ 8m→
		$A = 8.8m^2$
7. Area of a	$\frac{(a+b)}{2} \times h$	6 cm
Trapezium	2	5 cm
	"Half the sum of the parallel side, times the	
	height between them. That is how you	$\longleftarrow \qquad 16 \text{ cm} \qquad \Rightarrow A = 55 cm^2$
	calculate the area of a trapezium"	
8. Compound Shape	A shape made up of a combination of other known shapes put together.	
Shape	other known snapes put togetter.	
		- +
		+

Topic: Circumference and Area

	-			
	3	2	2	ş
	٣		1	
1.		1	÷γ	
	λ.	1.2	Ð.	1
	1	<u> </u>	· ·	

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$\hat{C} = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} \mathbf{F} \mathbf{F} \mathbf{V} \mathbf{R} \mathbf{T} \mathbf{P} \mathbf{F} \mathbf{D} \mathbf{I} \mathbf{S} \mathbf{R} \mathbf{T} \mathbf{R} \mathbf{T} \mathbf{F} \mathbf{F} \mathbf{Z} \mathbf{\theta} \mathbf{T} \mathbf{P} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{F} \mathbf{F} \mathbf{Z} \mathbf{\theta} \mathbf{T} \mathbf{P} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{F} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$

8. Surface	Curved Surface Area = πdh or $2\pi rh$	1
Area of a		
Cylinder	Total SA = $2\pi r^2 + \pi dh$ or $2\pi r^2 + 2\pi rh$	5
		2
		$Total SA = 2\pi(2)^2 + \pi(4)(5) = 28\pi$
9. Surface	Curved Surface Area = πrl	//
Area of a Cone	where $l = slant \ height$	5m
	Total SA = $\pi r l + \pi r^2$	
	You may need to use Pythagoras' Theorem	3m
	to find the slant height	$Total SA = \pi(3)(5) + \pi(3)^2 = 24\pi$
10. Surface	$SA = 4\pi r^2$	Find the surface area of a sphere with
Area of a		radius 3cm.
Sphere	Look out for hemispheres – halve the SA of	
	a sphere and add on a circle (πr^2)	$SA = 4\pi(3)^2 = 36\pi cm^2$

Topic: Volume

÷	Υ¥	, if
	m	Y
1	-35	5
	~	1

T : - /SI-:11		F
Topic/Skill 1. Volume	Definition/Tips Volume is a measure of the amount of	Example
1. volume	space inside a solid shape.	
	space morae a sona snape.	
	Units: mm^3 , cm^3 , m^3 etc.	
2. Volume of a	$V = I $ and $th \times W$ idth $\times U$ of a ht	10
2. Volume of a Cube/Cuboid	$V = Length \times Width \times Height$ $V = L \times W \times H$	6cm
	You can also use the Volume of a Prism	3 cm
	formula for a cube/cuboid.	
		5cm
		volume = $6 \times 5 \times 3$
		$= 90 \text{ cm}^3$
3. Prism	A prism is a 3D shape whose cross section	
	is the same throughout.	
		Rectangle Prism Cube
		Triangle Prism
		HALL I
		Pentagonal Prism Hexagonal Prism
4. Cross Section	The cross section is the shape that continues all the way through the prism.	
Section	continues an the way through the prism.	Cross Section
5. Volume of a	$V = Area of Cross Section \times Length$	
Prism	$V = A \times L$	
		Area of
		Cross Section
		Length
6. Volume of a	$V = \pi r^2 h$	
Cylinder		5cm
		2cm
		$V = \pi(4)(5)$
7. Volume of a	1	$= 62.8 cm^3$
Cone	$V = \frac{1}{3}\pi r^2 h$	\land
	5	5cm
		$V = \frac{1}{3}\pi(4)(5)$
		$= 20.9 cm^3$
		= 20.9Cm

8. Volume of a	1	
Pyramid	$Volume = \frac{1}{3}Bh$	
-)	where $B = area of the base$	7cm
		6cm 6cm
		1
		$V = \frac{1}{3} \times 6 \times 6 \times 7 = 84cm^3$
9. Volume of a	V 43	Find the volume of a sphere with
Sphere	$V = \frac{4}{3}\pi r^3$	diameter 10cm.
	Look out for hemispheres – just halve the	$V = \frac{4}{3}\pi(5)^3 = \frac{500\pi}{3}cm^3$
	volume of a sphere.	3 3 3
10. Frustums	A frustum is a solid (usually a cone or	
10. Flustuills	pyramid) with the top removed .	
	pyrannu) with the top removed.	
	Find the volume of the whole shape, then	24cm 5cm
	take away the volume of the small	
	cone/pyramid removed at the top.	10cm
		Volume = ?
		$V = \frac{1}{3}\pi(10)^2(24) - \frac{1}{3}\pi(5)^2(12)$
		$3^{n(10)}(27) 3^{n(3)}(12)$
		$= 700\pi cm^3$