Topic: Angles

Topic/Skill	Definition/Tips	Example
1. Types of	Acute angles are less than 90°.	
Angles	Right angles are exactly 90°.	
	Obtuse angles are greater than 90° but less	Acute Picht Obtuse Pefley
	than 180°.	Acute Right Obluse Renex
	Reflex angles are greater than 180° but less	
	than 360°.	
2. Angle	Can use one lower-case letters, eg. θ or x	В
Notation		
	Can use three upper-case letters, eg. <i>BAC</i>	
		$A \leftarrow \theta$
3 Angles at a	Angles around a point add up to 360°	
Point	Angles around a point and up to boo .	
1 01110		c b
		° \
		$a+b+c+d=360^{\circ}$
4 Angles on a	Angles around a point on a straight line	
Straight Line	add un to 180°.	/
Strangine Line		x /v
		$x + y = 180^{\circ}$
5. Opposite	Vertically opposite angles are equal.	
Angles		<u>x / y</u>
		y/x
6. Alternate	Alternate angles are equal.	
Angles	They look like Z angles, but never say this	y x
	in the exam.	/
		× / v
7.	Corresponding angles are equal.	y/
Corresponding	They look like F angles, but never say this	
Angles	in the exam.	
		- <u>y</u>
		/*
8. Co-Interior	Co-Interior angles add up to 180°.	
Angles	They look like \tilde{C} angles, but never say this	y x
	in the exam.	/
		/
		x y
		-

9. Angles in a Triangle	Angles in a triangle add up to 180°.	A 80 ⁰ 08
10 Types of	Right Angle Triangles have a 90° angle in	B 45° 55° C
Triangles	Isosceles Triangles have 2 equal sides and 2 equal base angles. Equilateral Triangles have 3 equal sides and 3 equal angles (60°). Scalene Triangles have different sides and different angles	Right Angled Isosceles
	Base angles in an isosceles triangle are equal.	60° 60° Equilateral Scalene
11. Angles in a Quadrilateral	Angles in a quadrilateral add up to 360°.	126° 75°
10 0 1		65° 93°
12. Polygon	A 2D shape with only straight edges.	Rectangle, Hexagon, Decagon, Kite etc.
13. Regular	A shape is regular if all the sides and all the angles are equal .	
14. Names of Polygons	3-sided = Triangle 4-sided = Quadrilateral 5-sided = Pentagon 6-sided = Hexagon	Triangle Quadrilateral Pentagon Hexagon
	7-sided = Heptagon/Septagon 8-sided = Octagon 9-sided = Nonagon 10-sided = Decagon	Heptagon Octagon Nonagon Decagon
15. Sum of Interior Angles	$(n-2) \times 180$ where n is the number of sides.	Sum of Interior Angles in a Decagon = $(10 - 2) \times 180 = 1440^{\circ}$
16. Size of Interior Angle in a Regular	$\frac{(n-2)\times 180}{n}$	Size of Interior Angle in a Regular Pentagon = $(5-2) \times 180$
Polygon	You can also use the formula:	

্য 🏶 সন্ধ

		Ŷ
	180 – Size of Exterior Angle	
17. Size of	360	Size of Exterior Angle in a Regular
Exterior Angle	n	Octagon =
in a Regular		360
Polygon	You can also use the formula:	
	180 – Size of Interior Angle	

্য 🏶 🕅 সন্ধু

Topic: Pythagoras' Theorem

Topic/Skill	Definition/Tips	Example
1. Pythagoras'	For any right angled triangle:	Finding a Shorter Side
Theorem		10
	$a^2 + b^2 = c^2$	y cumme cm
		SUBIRACI:
		8
		a = v = b = 8 = a = 10
		u = y, b = 8, c = 10
		$a^2 = c^2 - b^2$
	b	$y^2 = 100 - 64$
		$y^2 = 36$
	Used to find missing lengths .	y = 6
	a and b are the shorter sides, c is the	
	hypotenuse (longest side).	
2. 3D	Find missing lengths by identifying right	Can a pencil that is 20cm long fit in a
Pythagoras'	angled triangles.	pencil tin with dimensions 12cm, 13cm
Theorem		and 9cm? The pencil tin is in the shape
	You will often have to find a missing	of a cuboid.
	length you are not asked for before finding	
	the missing length you are asked for.	Hypotenuse of the base =
		$\sqrt{12^2 + 13^2} = 17.7$
		Diagonal of cuboid = $\sqrt{17.7^2 + 9^2}$ =
		19.8 <i>cm</i>
		No, the pencil cannot fit.

Topic: Right Angled Trigonometry

Topic/Skill	Definition/Tips	Example
1. Trigonometry	The study of triangles.	
2. Hypotenuse	The longest side of a right-angled triangle. Is always opposite the right angle.	hypotenuse
3. Adjacent	Next to	P etisoddo R Adjacent
4.	Use SOHCAHTOA.	
Formulae	$\sin \theta = \frac{0}{H}$ $\cos \theta = \frac{A}{H}$ $\tan \theta = \frac{0}{A}$ $\boxed{O}_{S} + C_{H} + T_{A}$ When finding a missing angle, use the 'inverse' trigonometric function by pressing the 'shift' button on the calculator.	x Use 'Opposite' and 'Adjacent', so use 'tan' $\tan 35 = \frac{x}{11}$ $x = 11 \tan 35 = 7.70 cm$ $\sqrt[7]{rm}$ $x = \frac{5}{5cm}$ Use 'Adjacent' and 'Hypotenuse', so use 'cos' $\cos x = \frac{5}{7}$ $x = \cos^{-1}\left(\frac{5}{7}\right) = 44.4^{\circ}$
5. 3D Trigonometry	Find missing lengths by identifying right angled triangles . You will often have to find a missing length you are not asked for before finding	C
	the missing length you are asked for.	A B

Topic:	Coordinates	and Linear	Graphs
---------------	-------------	------------	--------

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y -coordinate (movement up or down)	$\begin{array}{c} & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ &$
2. Midpoint of a Line	Method 1: add the x coordinates and divide by 2, add the y coordinates and divide by 2 Method 2: Sketch the line and find the values half way between the two x and two	Find the midpoint between (2,1) and (6,9) $\frac{2+6}{2} = 4 \text{ and } \frac{1+9}{2} = 5$ So, the midpoint is (4,5)
3 Linear	y values. Straight line graph	Evample:
Graph	The general equation of a linear graph is y = mx + c where <i>m</i> is the gradient and <i>c</i> is the y- intercept.	Chample. Other examples: x = y y = 4 x = -2 y = 2x - 7 y + x = 10
	The equation of a linear graph can contain an x-term a y-term and a number	2y - 4x = 12
4. Plotting Linear Graphs	Method 1: Table of Values Construct a table of values to calculate coordinates.	x -3 -2 -1 0 1 2 3 y= x +3 0 1 2 3 4 5 6
	Method 2: Gradient-Intercept Method (use when the equation is in the form $y = mx + c$) 1. Plots the y-intercept 2. Using the gradient, plot a second point. 3. Draw a line through the two points plotted.	$y = \frac{3}{2}x + 1$ y =
	Method 3: Cover-Up Method (use when the equation is in the form $ax + by = c$) 1. Cover the <i>x</i> term and solve the resulting equation. Plot this on the $x - axis$. 2. Cover the <i>y</i> term and solve the resulting equation. Plot this on the $y - axis$. 3. Draw a line through the two points plotted.	2x + 4y = 8

5. Gradient	The gradient of a line is how steep it is.	Gradient = $4/2 = 2$
6. Finding the Equation of a Line <u>given a</u> <u>point and a</u> <u>gradient</u>	Gradient = $\frac{Change \text{ in } y}{Change \text{ in } x} = \frac{Rise}{Run}$ The gradient can be positive (sloping upwards) or negative (sloping downwards) Substitute in the gradient (m) and point (x,y) in to the equation $y = mx + c$ and solve for c.	Find the equation of the line with gradient 4 passing through (2,7). $y = mx + c$ $7 = 4 \times 2 + c$ $c = -1$
7. Finding the Equation of a Line <u>given two</u> <u>points</u>	Use the two points to calculate the gradient . Then repeat the method above using the gradient and either of the points.	y = 4x - 1 Find the equation of the line passing through (6,11) and (2,3) $m = \frac{11 - 3}{6 - 2} = 2$ $y = mx + c$ $11 = 2 \times 6 + c$ $c = -1$
8. Parallel Lines	If two lines are parallel , they will have the same gradient . The value of m will be the same for both lines.	y = 2x - 1 Are the lines $y = 3x - 1$ and $2y - 6x + 10 = 0$ parallel? Answer: Rearrange the second equation in to the form $y = mx + c$ $2y - 6x + 10 = 0 \rightarrow y = 3x - 5$ Since the two gradients are equal (3), the lines are parallel.
9. Perpendicular Lines	If two lines are perpendicular , the product of their gradients will always equal -1. The gradient of one line will be the negative reciprocal of the gradient of the other line. You may need to rearrange equations of lines to compare gradients (they need to be in the form $y = mx + c$)	Find the equation of the line perpendicular to $y = 3x + 2$ which passes through (6,5) Answer: As they are perpendicular, the gradient of the new line will be $-\frac{1}{3}$ as this is the negative reciprocal of 3. y = mx + c

ې نې د ا

ي پې پې
$5 = -\frac{1}{3} \times 6 + c$ $c = 7$
$y = -\frac{1}{3}x + 7$

Topic/Skill	Definition/Tips	Example
1. Coordinates	Written in pairs . The first term is the x - coordinate (movement across). The second term is the y-coordinate (movement up or down)	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $
2. Linear	Straight line graph.	Example:
Grapn	an x-term , a y-term and a number .	Other examples: x = y $y = 4$ $x = -2$ $y = 2x - 7$ $y + x = 10$ $2y - 4x = 12$
3. Quadratic	A ' U-shaped ' curve called a parabola .	y
Graph	The equation is of the form $y = ax^2 + bx + c$, where <i>a</i> , <i>b</i> and <i>c</i> are numbers, $a \neq 0$. If $a < 0$, the parabola is upside down .	-1.5 x
4. Cubic Graph	The equation is of the form $y = ax^3 + k$, where k is an number	a>0 a<0
	If $a > 0$, the curve is increasing. If $a < 0$, the curve is decreasing.	
5. Reciprocal Graph	The equation is of the form $y = \frac{A}{x}$, where A is a number and $x \neq 0$. The graph has asymptotes on the x-axis and y-axis.	
6. Asymptote	A straight line that a graph approaches but never touches .	horizontal asymptote

Tibshelf Community School

Topic: Real Life Graphs

Topic/Skill	Definition/Tips	Example
1. Real Life	Graphs that are supposed to model some	40
Graphs	real-life situation.	38 -
Graphs	 The actual meaning of the values depends on the labels and units on each axis. The gradient might have a contextual meaning. The y-intercept might have a contextual meaning. The area under the graph might have a contextual meaning. 	(3) (3) (3) (4) (4) (4) (4) (5) (4) (5) (5) (4) (5) (5) (5) (4) (5) (5) (5) (4) (5) (5) (5) (5) (6)
		The gradient shows the cost per day. It costs £3/day to hire the ladder. The y-intercept shows the additional cost/deposit/fixed charge (something not linked to how long the ladder is hired for). The additional cost is £7.
2. Conversion	A line graph to convert one unit to	Conversion graph miles \longleftrightarrow kilometres
Graph	 another. Can be used to convert units (eg. miles and kilometres) or currencies (\$ and £) Find the value you know on one axis, read up/across to the conversion line and read the equivalent value from the other axis. 	km = 5 miles
3. Depth of Water in Containers	Graphs can be used to show how the depth of water changes as different shaped containers are filled with water at a constant rate.	

Topio/Skill	Definition/Ting	Example
1. Translation	Translate means to move a shape. The shape does not change size or orientation.	Q R 3 4 3 4 4 P 3 4
2. Column Vector	In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)	$\binom{2}{3}$ means '2 right, 3 up' $\binom{-1}{5}$ means '1 left, 5 down'
3. Rotation	The size does not change, but the shape is turned around a point . Use tracing paper.	Rotate Shape A 90° anti-clockwise about $(0,1)$
4. Reflection	The size does not change, but the shape is 'flipped' like in a mirror. Line $x =$? is a vertical line. Line $y =$? is a horizontal line. Line $y = x$ is a diagonal line.	Reflect shape C in the line $y = x$
5. Enlargement	The shape will get bigger or smaller . Multiply each side by the scale factor .	Scale Factor = 3 means '3 times larger = multiply by 3' Scale Factor = ½ means 'half the size = divide by 2'

Topic: Shape Transformations

े 👬 जहा

Tibshelf Community School

6. Finding the Centre of Enlargement	Draw straight lines through corresponding corners of the two shapes. The centre of enlargement is the point where all the lines cross over. Be careful with negative enlargements as the corresponding corners will be the other way around.	A to B is an enlargement SF 2 about the point (2,1)
7. Describing Transformatio ns	 Give the following information when describing each transformation: Look at the number of marks in the question for a hint of how many pieces of information are needed. If you are asked to describe a 'transformation', you need to say the name of the type of transformation as well as the other details. 	 Translation, Vector Rotation, Direction, Angle, Centre Reflection, Equation of mirror line Enlargement, Scale factor, Centre of enlargement
8. Negative Scale Factor Enlargements	Negative enlargements will look like they have been rotated. SF = -2 will be rotated, and also twice as big.	Enlarge ABC by scale factor -2, centre (1,1)
9. Invariance	A point, line or shape is invariant if it does not change/move when a transformation is performed. An invariant point 'does not vary'.	If shape P is reflected in the $y - axis$, then exactly one vertex is invariant.

Topic: Loci and Constructions

Topic/Skill	Definition/Tips	Example
1. Parallel	Parallel lines never meet.	
2	Domondiculou lines and at right angles	
2. Perpendicular	There is a 00° angle between them	
reipendiculai	There is a 90° alighe between them.	
3. Vertex	A corner or a point where two lines meet.	vertex
		^***
		С С В
4. Angle	Angle Bisector: Cuts the angle in half.	
Bisector		
	1. Place the sharp end of a pair of	XX
	compasses on the vertex.	
	2. Draw an arc, marking a point on each	
	line.	
	5. Without changing the compass put the	Angle Bisector
	point where two arcs cross over	
	4 Use a ruler to draw a line through the	
	vertex and centre point	
	vortex und contre point.	
5.	Perpendicular Bisector: Cuts a line in	
Perpendicular	half and at right angles.	X
Bisector		
	1. Put the sharp point of a pair of	Line Bisector
	compasses on A.	
	2. Open the compass over half way on the	AB
	line.	
	3. Draw an arc above and below the line.	
	4. without changing the compass, repeat	×
	5 Draw a straight line through the two	\sim
	intersecting arcs	
6	The perpendicular distance from a point	
Perpendicular	to a line is the shortest distance to that	p
from an	line.	
External Point		×
	1. Put the sharp point of a pair of	
	compasses on the point.	
	2. Draw an arc that crosses the line twice.	\vee
	3. Place the sharp point of the compass on	
	one of these points, open over half way and	
	draw an arc above and below the line.	
	4. Repeat from the other point on the line.	

	5. Draw a straight line through the two	
	intersecting arcs.	
7.	Given line PQ and point R on the line:	\sim
Perpendicular		
from a Point	1. Put the sharp point of a pair of	
on a Line	compasses on point R.	
	2. Draw two arcs either side of the point of	
	equal width (giving points S and T)	P S R T Q
	3. Place the compass on point S, open over	
	halfway and draw an arc above the line.	
	4. Repeat from the other arc on the line	
	(point T).	
	5. Draw a straight line from the intersecting	
	arcs to the original point on the line.	
8. Constructing	1. Draw the base of the triangle using a	
Triangles	ruler.	
(Side, Side,	2. Open a pair of compasses to the width of	X
Side)	one side of the triangle.	
	3. Place the point on one end of the line and	
	draw an arc.	
	4. Repeat for the other side of the triangle	
	at the other end of the line.	
	5. Using a ruler, draw lines connecting the	
	ends of the base of the triangle to the point	
	where the arcs intersect.	
9. Constructing	1. Draw the base of the triangle using a	A
Triangles	ruler.	\wedge
(Side, Angle,	2. Measure the angle required using a	4cm
Side)	protractor and mark this angle.	
	3. Remove the protractor and draw a line of	
	the exact length required in line with the	B 250°
	angle mark drawn.	72H
	4. Connect the end of this line to the other	
	end of the base of the triangle.	
10.	1. Draw the base of the triangle using a	×
Constructing	ruler.	
Triangles	2. Measure one of the angles required using	
(Angle, Side,	a protractor and mark this angle.	
Angle)	3. Draw a straight line through this point	
	from the same point on the base of the	y <u>/42° 51°</u> Z
	triangle.	o. scm
	4. Repeat this for the other angle on the	
	other end of the base of the triangle.	

11. Constructing an Equilateral Triangle (also makes a 60° angle)	 Draw the base of the triangle using a ruler. Open the pair of compasses to the exact length of the side of the triangle. Place the sharp point on one end of the line and draw an arc. Repeat this from the other end of the line. Using a ruler, draw lines connecting the ends of the base of the triangle to the point 	A B
10 1 1	where the arcs intersect.	
12. Loci and	A locus is a path of points that follow a rule	\times
Regions	ruie.	
	For the locus of points closer to B than A , create a perpendicular bisector between A and B and shade the side closer to B.	A B Points Closer to B than A.
	For the locus of points equidistant from A , use a compass to draw a circle , centre A.	A 2cm A 2cm
		Points less than Points more than 2cm from A 2cm from A
	For the locus of points equidistant to line X and line Y , create an angle bisector .	x
	For the locus of points a set distance from a line , create two semi-circles at either end joined by two parallel lines .	D E
13. Equidistant	A point is equidistant from a set of objects if the distances between that point and each of the objects is the same .	

Topic: Bearings and Scale Diagrams

Topic/Skill	Definition/Tips	Example
1. Scale	The ratio of the length in a model to the length of the real thing.	Scale 1:10
		Real HorseDrawn Horse1500 mm high150 mm high2000 mm long200 mm long
2. Scale (Map)	The ratio of a distance on the map to the actual distance in real life .	1 in. = 250 mi 1 cm = 160 km
3. Bearings	 Measure from North (draw a North line) Measure clockwise Your answer must have 3 digits (eg. 047°) Look out for where the bearing is measured 	The bearing of \underline{B} from \underline{A}
4. Compass Directions	Irom.You can use an acronym such as 'NeverEat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.Bearings: $NE = 045^\circ, W = 270^\circ etc.$	NW NW NW NE SW SE SE