Topic: Indices

Topic/Skill	Definition/Tips	Example
1. Square	The number you get when you multiply a	1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121,
Number	number by itself.	144, 169, 196, 225
2. Square Root	The number you multiply by itself to get	$9^2 = 9 \times 9 = 81$ $\sqrt{36} = 6$
1	another number.	100 - 0
		because $6 \times 6 = 36$
	The reverse process of squaring a number.	
3. Solutions to	Equations involving squares have two	Solve $x^2 = 25$
$x^2 =$	solutions, one positive and one negative.	
		x = 5 or x = -5
		This can also be written as $x = \pm 5$
4. Cube	The number you get when you multiply a	1, 8, 27, 64, 125
Number	number by itself and itself again.	$2^3 = 2 \times 2 \times 2 = 8$
5. Cube Root	The number you multiply by itself and	$\sqrt[3]{125} = 5$
	itself again to get another number.	
		because $5 \times 5 \times 5 = 125$
	The reverse process of cubing a number.	
6. Powers of	The powers of a number are that number	The powers of 3 are:
	raised to various powers.	21 2
		$3^1 = 3$ $3^2 = 9$
		$3^{-} = 9$ $3^{3} = 27$
		$3^{\circ} = 27$ $3^{4} = 81$ etc.
7.	When multiplying with the same base	$7^5 \times 7^3 = 7^8$
7. Multiplication	(number or letter), add the powers .	$a^{12} \times a = a^{13}$
Index Law	(number of fetter), and the powers.	$a^{2} \times a^{2} - a^{2}$ $4x^{5} \times 2x^{8} = 8x^{13}$
Index Law	$a^m \times a^n = a^{m+n}$	$4x \wedge 2x = 0x$
8. Division	When dividing with the same base (number	$15^7 \div 15^4 = 15^3$
Index Law	or letter), subtract the powers .	$x^9 \div x^2 = x^7$
		$20a^{11} \div 5a^3 = 4a^8$
	$a^m \div a^n = a^{m-n}$	
9. Brackets	When raising a power to another power,	$(y^2)^5 = y^{10}$
Index Laws	multiply the powers together.	$(6^3)^4 = 6^{12}$ $(5x^6)^3 = 125x^{18}$
		$(5x^6)^3 = 125x^{18}$
	$(a^m)^n = a^{mn}$	
10. Notable	$p = p^1$	$99999^0 = 1$
Powers	$p^0 = 1$	
11. Negative	A negative power performs the reciprocal.	$3^{-2} = \frac{1}{3^2} = \frac{1}{9}$
Powers	$a^{-m} = \frac{1}{a^m}$	$3 - \frac{1}{3^2} - \frac{1}{9}$
10 5 1 1		2
12. Fractional	The denominator of a fractional power acts	$27^{\frac{2}{3}} = \left(\sqrt[3]{27}\right)^2 = 3^2 = 9$
D	l as a 'root'	
Powers	as a 'root'.	
Powers		$(25,\frac{3}{5},(\sqrt{25})^3,5,\frac{3}{5},1)$
Powers	The numerator of a fractional power acts as	$\left(\frac{25}{11}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{11}\right)^{3} = \left(\frac{5}{11}\right)^{3} = \frac{125}{11}$
Powers		$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$
Powers	The numerator of a fractional power acts as	$\left(\frac{25}{16}\right)^{\frac{3}{2}} = \left(\frac{\sqrt{25}}{\sqrt{16}}\right)^3 = \left(\frac{5}{4}\right)^3 = \frac{125}{64}$

Tibshelf Community School

Topic: Standard Form

5 👬

Topic/Skill	Definition/Tips	Example
1. Standard	$A \times 10^{b}$	$8400 = 8.4 \times 10^3$
Form		
	where $1 \le A < 10$, $b = integer$	$0.00036 = 3.6 \times 10^{-4}$
2. Multiplying	Multiply: Multiply the numbers and add	$(1.2 \times 10^3) \times (4 \times 10^6) = 8.8 \times 10^9$
or Dividing	the powers.	
with Standard	Divide: Divide the numbers and subtract	$(4.5 \times 10^5) \div (3 \times 10^2) = 1.5 \times 10^3$
Form	the powers.	
3. Adding or	Convert in to ordinary numbers, calculate	$2.7 \times 10^4 + 4.6 \times 10^3$
Subtracting	and then convert back in to standard form	= 27000 + 4600 = 31600
with Standard		$= 3.16 \times 10^4$
Form		

Topic: Surds

Topic/Skill	Definition/Tips	Example
1. Rational	A number of the form $\frac{p}{q}$, where p and q are	$\frac{4}{9}$, 6, $-\frac{1}{3}$, $\sqrt{25}$ are examples of rational
Number	integers and $q \neq 0$.	numbers.
	A number that cannot be written in this form is called an 'irrational' number	$\pi, \sqrt{2}$ are examples of an irrational
2. Surd	The irrational number that is a root of a	numbers. $\sqrt{2}$ is a surd because it is a root which
2. 5010	positive integer, whose value cannot be	cannot be determined exactly.
	determined exactly.	$\sqrt{2} = 1.41421356$ which never
	Surds have infinite non-recurring decimals.	$\sqrt{2} = 1.41421356$ which hever repeats.
3. Rules of Surds	$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$	$\sqrt{48} = \sqrt{16} \times \sqrt{3} = 4\sqrt{3}$
	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$	$\sqrt{\frac{25}{36}} = \frac{\sqrt{25}}{\sqrt{36}} = \frac{5}{6}$
	$a\sqrt{c}\pm b\sqrt{c}=(a\pm b)\sqrt{c}$	$\sqrt{50} \sqrt{50} 0$ $2\sqrt{5} + 7\sqrt{5} = 9\sqrt{5}$
	$\sqrt{a} \times \sqrt{a} = a$	$\sqrt{7} \times \sqrt{7} = 7$
4. Rationalise a Denominator	The process of rewriting a fraction so that the denominator contains only rational numbers .	$\frac{\sqrt{7} \times \sqrt{7} = 7}{\frac{\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{3} \times \sqrt{2}}{\sqrt{2} \times \sqrt{2}} = \frac{\sqrt{6}}{2}}$
		$\frac{6}{3+\sqrt{7}} = \frac{6(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})} = \frac{18-6\sqrt{7}}{9-7}$
		$=\frac{9-7}{18-6\sqrt{7}}=9-3\sqrt{7}$

Topic: Fractions

	and keep the denominator the same .	$\frac{\frac{2}{3} = \frac{10}{15}}{\frac{4}{5} = \frac{12}{15}}$ $\frac{\frac{10}{15} + \frac{12}{15} = \frac{22}{15} = 1\frac{7}{15}$
12. Multiplying Fractions	Multiply the numerators together and multiply the denominators together.	$\frac{3}{8} \times \frac{2}{9} = \frac{6}{72} = \frac{1}{12}$
13. Dividing Fractions	 'Keep it, Flip it, Change it – KFC' Keep the first fraction the same Flip the second fraction upside down Change the divide to a multiply Multiply by the reciprocal of the second 	$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{18}{20} = \frac{9}{10}$
	fraction.	

Topic: Sequences

	-	-
ź	S VI	R.R.
	Jac	
1	.×.	

Topic/Skill	Definition/Tips	Example
1. Linear	A number pattern with a common	2, 5, 8, 11 is a linear sequence
Sequence	difference.	
2. Term	Each value in a sequence is called a term.	In the sequence 2, 5, 8, 11, 8 is the
		third term of the sequence.
3. Term-to-	A rule which allows you to find the next	First term is 2. Term-to-term rule is
term rule	term in a sequence if you know the	'add 3'
	previous term.	
1 with to was	A mis which allows you to colonize the	Sequence is: 2, 5, 8, 11 nth term is $3n - 1$
4. nth term	A rule which allows you to calculate the term that is in the nth position of the	The term is $5n - 1$
	-	The 100^{th} term is $3 \times 100 - 1 = 299$
	sequence.	The 100 term is $5 \times 100 - 1 = 299$
	Also known as the 'position-to-term' rule.	
	This known as the position to term rule.	
	n refers to the position of a term in a	
	sequence.	
5. Finding the	1. Find the difference .	Find the nth term of: 3, 7, 11, 15
nth term of a	2. Multiply that by <i>n</i> .	
linear	3. Substitute $n = 1$ to find out what	1. Difference is +4
sequence	number you need to add or subtract to	2. Start with 4 <i>n</i>
	get the first number in the sequence.	3. $4 \times 1 = 4$, so we need to subtract 1
		to get 3.
		nth term = $4n - 1$
6. Fibonacci	A sequence where the next number is found	The Fibonacci sequence is:
type sequences	by adding up the previous two terms	1,1,2,3,5,8,13,21,34
		An example of a Fibonacci-type
		sequence is:
7. Geometric	A sequence of numbers where each term is	4, 7, 11, 18, 29 An example of a geometric sequence is:
Sequence	found by multiplying the previous one by	2, 10, 50, 250
Sequence	a number called the common ratio , r .	The common ratio is 5
	a number cance the common ratio, r.	
	a number cance the common ratio, r.	
	a number cance the common ratio, r.	Another example of a geometric
	a number cance the common ratio, r.	
	a number caned the common ratio , r .	Another example of a geometric sequence is: 81, $-27, 9, -3, 1 \dots$
8 Quadratia		Another example of a geometric sequence is:
8. Quadratic	A sequence of numbers where the second	Another example of a geometric sequence is: $81, -27, 9, -3, 1 \dots$ The common ratio is $-\frac{1}{3}$ $2 \qquad 6 \qquad 12 \qquad 20 \qquad 30 \qquad 42$
8. Quadratic Sequence		Another example of a geometric sequence is: 81, -27, 9, -3, 1 The common ratio is $-\frac{1}{3}$
-	A sequence of numbers where the second difference is constant .	Another example of a geometric sequence is: $81, -27, 9, -3, 1 \dots$ The common ratio is $-\frac{1}{3}$ 2 6 12 20 30 42
Sequence	A sequence of numbers where the second difference is constant . A quadratic sequence will have a n^2 term.	Another example of a geometric sequence is: $81, -27, 9, -3, 1 \dots$ The common ratio is $-\frac{1}{3}$ $2 - \frac{6}{+4} + \frac{12}{+2} + \frac{20}{+2} - \frac{30}{+4} + \frac{42}{+2} + \frac{42}{+2} + \frac{12}{+2} + \frac{42}{+2} + \frac{42}{+2}$
Sequence 9. nth term of a	A sequence of numbers where the second difference is constant .	Another example of a geometric sequence is: $81, -27, 9, -3, 1 \dots$ The common ratio is $-\frac{1}{3}$ $2 \qquad 6 \qquad 12 \qquad 20 \qquad 30 \qquad 42$ $+4 \qquad +6 \qquad +8 \qquad +10 \qquad +12$
Sequence	A sequence of numbers where the second difference is constant . A quadratic sequence will have a n^2 term.	Another example of a geometric sequence is: $81, -27, 9, -3, 1 \dots$ The common ratio is $-\frac{1}{3}$ $2 - \frac{6}{+4} + \frac{12}{+2} + \frac{20}{+2} - \frac{30}{+4} + \frac{42}{+2} + \frac{42}{+2}$

10. nth term of	1. Find the first and second differences.	Find the nth term of: 4, 7, 14, 25, 40
a quadratic	2. Halve the second difference and multiply	
sequence	this by n^2 .	Answer:
	3. Substitute $n = 1, 2, 3, 4$ into your	Second difference = $+4 \rightarrow$ nth term =
	expression so far.	$2n^2$
	4. Subtract this set of numbers from the	
	corresponding terms in the sequence from	Sequence: 4, 7, 14, 25, 40
	the question.	$2n^2$ 2, 8, 18, 32, 50
	5. Find the nth term of this set of numbers.	Difference: 2, -1, -4, -7, -10
	6. Combine the nth terms to find the overall	
	nth term of the quadratic sequence.	Nth term of this set of numbers is
		-3n + 5
	Substitute values in to check your nth term	
	works for the sequence.	Overall nth term: $2n^2 - 3n + 5$
11. Triangular	The sequence which comes from a pattern	1 3 6 10
numbers	of dots that form a triangle.	
	1, 3, 6, 10, 15, 21	

Topic: Algebra

		Algebra
Topic/Skill	Definition/Tips	Example
1. Expression	A mathematical statement written using symbols , numbers or letters ,	$3x + 2$ or $5y^2$
2. Equation	A statement showing that two expressions are equal	2y - 17 = 15
3. Identity	An equation that is true for all values of the variables	$2x \equiv x + x$
4. Formula	An identity uses the symbol: ≡ Shows the relationship between two or more variables	Area of a rectangle = length x width or A= LxW
5. Simplifying Expressions	Collect 'like terms'. Be careful with negatives. x^2 and x are not like terms.	2x + 3y + 4x - 5y + 3 = 6x - 2y + 3 $3x + 4 - x^{2} + 2x - 1 = 5x - x^{2} + 3$
6. <i>x</i> times <i>x</i>	The answer is x^2 not $2x$.	Squaring is multiplying by itself, not by 2.
7. $p \times p \times p$	The answer is p^3 not $3p$	If p=2, then $p^3=2x^2x^2=8$, not 2x3=6
8. <i>p</i> + <i>p</i> + <i>p</i>	The answer is 3p not p^3	If p=2, then $2+2+2=6$, not $2^3 = 8$
9. Expand	To expand a bracket, multiply each term in the bracket by the expression outside the bracket.	3(m+7) = 3x + 21
10. Factorise	The reverse of expanding . Factorising is writing an expression as a product of terms by ' taking out' a common factor .	6x - 15 = 3(2x - 5), where 3 is the common factor.

Topic: Solving Quadratics by Factorising

Topic/Skill	Definition/Tips	Example
1. Quadratic	A quadratic expression is of the form	Examples of quadratic expressions:
		x^2
	$ax^2 + bx + c$	$8x^2 - 3x + 7$
	where a, b and c are numbers, $a \neq 0$	Examples of non-quadratic expressions: $2x^3 - 5x^2$
		$\frac{9x-1}{2}$
2. Factorising Quadratics	When a quadratic expression is in the form $x^2 + bx + c$ find the two numbers that add to give b and multiply to give c.	$x^{2} + 7x + 10 = (x + 5)(x + 2)$ (because 5 and 2 add to give 7 and multiply to give 10)
		$x^{2} + 2x - 8 = (x + 4)(x - 2)$ (because +4 and -2 add to give +2 and multiply to give -8)
3. Difference	An expression of the form $a^2 - b^2$ can be	$x^2 - 25 = (x + 5)(x - 5)$
of Two Squares	factorised to give $(a + b)(a - b)$	$16x^2 - 81 = (4x + 9)(4x - 9)$
4. Solving	Isolate the x^2 term and square root both	$2x^2 = 98$
Quadratics	sides.	$x^2 = 49$
$(ax^2 = b)$	Remember there will be a positive and a negative solution .	$x = \pm 7$
5. Solving	Factorise and then solve = 0 .	$x^2 - 3x = 0$
Quadratics		x(x-3)=0
$(ax^2 + bx = 0)$		x = 0 or x = 3
6. Solving Quadratics by	Factorise the quadratic in the usual way. Solve = 0	Solve $x^2 + 3x - 10 = 0$
Factorising		Factorise: $(x + 5)(x - 2) = 0$
(<i>a</i> = 1)	Make sure the equation = 0 before factorising.	x = -5 or x = 2
7. Factorising Quadratics	When a quadratic is in the form $ax^2 + bx + c$	Factorise $6x^2 + 5x - 4$
when $a \neq 1$	1. Multiply a by $c = ac$	$1.6 \times -4 = -24$
	2. Find two numbers that add to give b and	2. Two numbers that add to give $+5$ and
	multiply to give ac.	multiply to give -24 are +8 and -3
	3. Re-write the quadratic, replacing bx with	$3.6x^2 + 8x - 3x - 4$
	the two numbers you found.	4. Factorise in pairs:
	4. Factorise in pairs – you should get the	2x(3x+4) - 1(3x+4)
	same bracket twice	5. Answer = $(3x + 4)(2x - 1)$
	5. Write your two brackets – one will be the repeated bracket, the other will be made of	
	the factors outside each of the two brackets.	
8. Solving	Factorise the quadratic in the usual way.	Solve $2x^2 + 7x - 4 = 0$
Quadratics by	Solve = 0	$\mathbf{F}_{\mathbf{r}}$
Factorising $(a \neq 1)$	Make sure the equation -0 before	Factorise: $(2x - 1)(x + 4) = 0$
$(a \neq 1)$	Make sure the equation = 0 before factorising.	Factorise: $(2x - 1)(x + 4) = 0$ $x = \frac{1}{2} \text{ or } x = -4$
		L

Topic: Inequalities

Topic/Skill	Definition/Tips	Example
1. Inequality	An inequality says that two values are not equal.	7 ≠ 3
		$x \neq 0$
	$a \neq b$ means that a is not equal to b.	
2. Inequality	x > 2 means x is greater than 2	State the integers that satisfy
symbols	x < 3 means x is less than 3	$-2 < x \le 4.$
	$x \ge 1$ means x is greater than or equal to	
	1	-1, 0, 1, 2, 3, 4
	$x \le 6$ means x is less than or equal to 6	
3. Inequalities	Inequalities can be shown on a number line.	
on a Number		$-2 -1 0 1 2 3 x \ge 0$
Line	Open circles are used for numbers that are	
	less than or greater than (< or >)	-5 -4 -3 -2 -1 0 1 2 3 4 5 x < 2
	Closed circles are used for numbers that	
	are less than or equal or greater than or equal $(\leq or \geq)$	$-5 -4 -3 -2 -1 0 1 2 3 4 5 -5 \le x < 4$
4. Graphical	Inequalities can be represented on a	Shade the region that satisfies:
Inequalities	coordinate grid.	$y > 2x, x > 1$ and $y \le 3$
	If the inequality is strict $(x > 2)$ then use a dotted line .	y = 2x
	If the inequality is not strict $(x \le 6)$ then use a solid line .	y = 3
	Shade the region which satisfies all the inequalities.	x = 1

Topic: Equations and Formulae

b find the answer /value of something be inverse operations on both sides of e equation (balancing method) until you ad the value for the letter. oposite be inverse operations on both sides of e formula (balancing method) until you	Solve $2x - 3 = 7$ Add 3 on both sides 2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction. The inverse of multiplication is division. Make x the subject of $y = \frac{2x-1}{z}$
e equation (balancing method) until you ad the value for the letter. pposite se inverse operations on both sides of e formula (balancing method) until you	2x = 10 Divide by 2 on both sides x = 5 The inverse of addition is subtraction. The inverse of multiplication is division.
Se inverse operations on both sides of e formula (balancing method) until you	The inverse of multiplication is division.
e formula (balancing method) until you	Make x the subject of $y = \frac{2x-1}{z}$
d the expression for the letter.	Multiply both sides by z yz = 2x - 1 Add 1 to both sides yz + 1 = 2x Divide by 2 on both sides $\frac{yz + 1}{2} = x$ We now have x as the subject.
bstitute letters for words in the estion.	Bob charges £3 per window and a £5 call out charge. C = 3N + 5Where N=number of windows and C=cost
	a = 3, b = 2 and $c = 5$. Find: 1. $2a = 2 \times 3 = 6$
	lace letters with numbers.

Topic: Algebraic Fractions

5 👬

Topic/Skill	Definition/Tips	Example
1. Algebraic	A fraction whose numerator and	6 <i>x</i>
Fraction	denominator are algebraic expressions.	$\overline{3x-1}$
2. Adding/	For $\frac{a}{b} \pm \frac{c}{d}$, the common denominator is	$\frac{1}{x}$
Subtracting	b d bd	$\frac{1}{x} + \frac{\pi}{2y}$
Algebraic		$=\frac{1(2y)}{2xy} + \frac{x(x)}{2xy}$
Fractions	a c ad bc $ad \pm bc$	2xy $2xy$
	$\frac{a}{b} \pm \frac{c}{d} = \frac{ad}{bd} \pm \frac{bc}{bd} = \frac{ad \pm bc}{bd}$	$=\frac{\frac{2y+x^2}{2xy}}{\frac{x}{3}\times\frac{x+2}{x-2}}$
2 Multiplying	Multiply the numerators together and the	2xy
3. Multiplying Algebraic	Multiply the numerators together and the denominators together.	$\frac{x}{2} \times \frac{x+2}{x-2}$
Fractions	denominators together.	3 x - 2 x(x + 2)
1 Tuetrono	a c ac	$=\frac{x(x+2)}{3(x-2)}$
	$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$	$x^{2} + 2x$
		$=\frac{x^2+2x}{3x-6}$
4. Dividing	Multiply the first fraction by the	$x \cdot 2x$
Algebraic	reciprocal of the second fraction.	3 - 7
Fractions		$=\frac{x}{x}\times\frac{7}{x}$
	$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$	$\frac{3}{7} \frac{2x}{7}$
	$b \cdot d = b \wedge c = bc$	$\frac{\frac{x}{3} \div \frac{2x}{7}}{= \frac{x}{3} \times \frac{7}{2x}}$ $= \frac{\frac{7}{6x}}{= \frac{7}{6}}$
5. Simplifying	Factorise the numerator and denominator	$\frac{-6x-6}{2x-4} = \frac{(x+3)(x-2)}{2(x-2)} = \frac{x+3}{2}$
Algebraic	and cancel common factors .	$\frac{1}{2x-4} = \frac{1}{2(x-2)} = \frac{1}{2}$
Fractions		

ी 👫 एक्ट्रा

Topic/Skill	Definition/Tips	Example
1. Types of	Qualitative Data – non-numerical data	Qualitative Data – eye colour, gender
Data	Quantitative Data – numerical data	etc.
	Continuous Data – data that can take any numerical value within a given range.	Continuous Data – weight, voltage etc.
	Discrete Data – data that can take only specific values within a given range.	Discrete Data – number of children, shoe size etc.
2. Grouped	Data that has been bundled in to	Foot length, l, (cm) Number of children
Data	categories.	
		10 0.1 12
	Seen in grouped frequency tables, histograms, cumulative frequency etc.	12 ≤ <i>l</i> < 17 53
3. Primary	Primary Data – collected yourself for a	Primary Data – data collected by a
/Secondary Data	specific purpose.	student for their own research project.
Data	Secondary Data – collected by someone else for another purpose.	Secondary Data – Census data used to analyse link between education and earnings.
4. Mean	Add up the values and divide by how many values there are.	The mean of 3, 4, 7, 6, 0, 4, 6 is $\frac{3+4+7+6+0+4+6}{7} = 5$
5. Mean from a Table	 Find the midpoints (if necessary) Multiply Frequency by values or midpoints Add up these values Divide this total by the Total Frequency 	Height in cm Frequency Midpoint $F \times M$ $0 < h \le 10$ 8 5 $8 \times 5 = 40$ $10 < h \le 30$ 10 20 $10 \times 20 = 200$ $30 < h \le 40$ 6 35 $6 \times 35 = 210$ Total 24 Ignore! 450 Estimated Mean height: $450 \div 24 =$ 24
	If grouped data is used, the answer will be an estimate .	18.75cm
6. Median Value	The middle value.	Find the median of: 4, 5, 2, 3, 6, 7, 6
varue	Put the data in order and find the middle one.	Ordered: 2, 3, 4, 5, 6, 6, 7
	If there are two middle values , find the number half way between them by adding	Median = 5
7. Median	them together and dividing by 2. $(n+1)$	If the total frequency is 15, the median
from a Table	Use the formula $\frac{(n+1)}{2}$ to find the position of the median.	will be the $\left(\frac{15+1}{2}\right) = 8th$ position
	n is the total frequency.	
8. Mode /Modal Value	Most frequent/common.	Find the mode: 4, 5, 2, 3, 6, 4, 7, 8, 4
	Can have more than one mode (called bi- modal or multi-modal) or no mode (if all values appear once)	Mode = 4
9. Range	Highest value subtract the Smallest value	Find the range: 3, 31, 26, 102, 37, 97.
	Range is a 'measure of spread'. The smaller	Range = 102-3 = 99

	the range the more <u>consistent</u> the data.	
10. Outlier	A value that 'lies outside' most of the other	12 10 Outlier
	values in a set of data.	8
	An outlier is much smaller or much	6
	larger than the other values in a set of data.	
		0 20 40 60 80 100
11. Lower	Divides the bottom half of the data into	Find the lower quartile of: 2, <u>3</u> , 4, 5, 6,
Quartile	two halves.	6, 7
	$LQ = Q_1 = \frac{(n+1)}{4} th$ value	$Q_1 = \frac{(7+1)}{4} = 2nd$ value $\rightarrow 3$
12. Lower	Divides the top half of the data into two	Find the upper quartile of: 2, 3, 4, 5, 6,
Quartile	halves.	<u>6</u> , 7
	$UQ = Q_3 = \frac{3(n+1)}{4} th \text{ value}$	$Q_3 = \frac{3(7+1)}{4} = 6th$ value $\rightarrow 6$
13.	The difference between the upper quartile	Find the IQR of: 2, 3, 4, 5, 6, 6, 7
Interquartile	and lower quartile.	
Range		$IQR = Q_3 - Q_1 = 6 - 3 = 3$
	$IQR = Q_3 - Q_1$	
	The smaller the interquartile range , the more consistent the data.	

Topic: Representing Data

1² 1

Topic/Skill	Definition/Tips	Example		
1. Frequency	A record of how often each value in a set	Number of marks	Tally marks	Frequency
Table	of data occurs .	1	JHT	7
		2	1111	5
		3	JHH I	6
		4	1111	5
		5	111	3
		Total		26
2. Bar Chart	Represents data as vertical blocks. x - axis shows the type of data y - axis shows the frequency for each type of data Each bar should be the same width There should be gaps between each bar Remember to label each axis.		1 2 3 imber of pets c	4 wwned
3. Types of Bar Chart	Compound/Composite Bar Charts show data stacked on top of each other.	Weight (gm) 40 20 10 0 0 0 0 0 0 0 0 0 0 0 0 0	Auminum	c
	Comparative/Dual Bar Charts show data side by side.	50 40 30 20 10 Jan Feb	ainfáll Mar Apr May Month Bar Chart	Key: London Bristol
4. Pie Chart	Used for showing how data breaks down			
	 into its constituent parts. When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category. 	Tennis 40 60 Hockey	144° 80° Netball	Irvey then
	Remember to label the category that each sector in the pie chart represents.	If there are 40 pe each person will of the pie chart.	-	•

5. Pictogram	Uses pictures or symbols to show the value of the data.	Black 🛱 🛱 🖡
	A pictogram must have a key.	Green \oint $= 4 \text{ cars}$ Others \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
6. Line Graph	A graph that uses points connected by straight lines to show how data changes in values. This can be used for time series data , which is a series of data points spaced over uniform time intervals in time order .	
7. Two Way Tables	A table that organises data around two categories.	1 2 3 4 5 6 7 8 9 Question: Complete the 2 way table below. Left Handed Right Handed Total Boys 10 58
	Fill out the information step by step using the information given. Make sure all the totals add up for all columns and rows.	Girls 84 100 Answer: Step 1, fill out the easy parts (the totals) Image: Step 1, fill out the easy parts (the totals) Left Handed Right Handed Total Boys 10 48 58 Girls 42 42 Total 16 84 100 Answer: Step 2, fill out the remaining parts Eff Handed Right Handed Total Boys 10 48 58 6 6 36 42
8. Box Plots	The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot.	Total1684100Students sit a maths test. The highest score is 19, the lowest score is 8, the median is 14, the lower quartile is 10 and the upper quartile is 17. Draw a
	A box plot can be drawn independently or from a cumulative frequency diagram.	box plot to represent this information.
9. Comparing Box Plots	 Write two sentences. 1. Compare the averages using the medians for two sets of data. 2. Compare the spread of the data using the range or IQR for two sets of data. The <u>smaller</u> the range/IQR, the <u>more consistent</u> the data. 	'On average, students in class A were more successful on the test than class B because their median score was higher.' 'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'
	You must compare box plots in the context of the problem.	

Topic: Histograms and Cumulative Frequency

্য 🏶 সন্ধ্রা

Topic/Skill	Definition/Tips	Example
Topic/Skill 1. Histograms	Definition/TipsA visual way to display frequency data using bars.Bars can be unequal in width.Histograms show frequency density on the y-axis, not frequency.Frequency Density = $\frac{Frequency}{Class Width}$ $\overrightarrow{Height(cm)}$ $\overrightarrow{Frequency}$ $0 < h \le 10$ 8 $10 < h \le 30$ 6 $30 < h \le 45$ $45 < h \le 70$ 5	Example Frequency Density (FD) $8 \div 5 = 1.6$ $6 \div 20 = 0.3$ $15 \div 15 = 1$ $5 \div 25 = 0.2$
2. Interpreting Histograms	The area of the bar is proportional to the frequency of that class interval. Frequency = Freq Density × Class Width	A histogram shows information about the heights of a number of plants. 4 plants were less than 5cm tall. Find the number of plants more than 5cm tall.
3. Cumulative Frequency	Cumulative Frequency is a running total.AgeFrequency $0 < a \le 10$ 15 $10 < a \le 40$ 35 $40 < a \le 50$ 10	$1.2 \times 10 + 2.4 \times 15 = 12 + 36 = 48$ Cumulative Frequency 15 $15 + 35 = 50$ $50 + 10 = 60$
4. Cumulative Frequency Diagram	 A cumulative frequency diagram is a curve that goes up. It looks a little like a stretched-out S shape. Plot the cumulative frequencies at the endpoint of each interval. 	$\begin{array}{c} 40 \\ 30 \\ CF \\ 20 \\ 10 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ Height \end{array}$

5. Quartiles from Cumulative Frequency Diagram	 Lower Quartile (Q1): 25% of the data is less than the lower quartile. Median (Q2): 50% of the data is less than the median. Upper Quartile (Q3): 75% of the data is less than the upper quartile. Interquartile Range (IQR): represents the middle 50% of the data. 	IQR = 37 - 18 = 19	
6. Hypothesis	A statement that might be true, which can be tested.	Hypothesis: 'Large dogs are better at catching tennis balls than small dogs'. We can test this hypothesis by having hundreds of different sized dogs try to catch tennis balls.	

Topic: Proportion

Topic/Skill	Definition/Tips	Example
1. Direct Proportion	If two quantities are in direct proportion, as one increases, the other increases by the same percentage. If y is directly proportional to x, this can be written as $y \propto x$ An equation of the form $y = kx$ represents	y = kx
2. Inverse	direct proportion, where k is the constantof proportionality.If two quantities are inversely proportional,	V .
Proportion	as one increases, the other decreases by the same percentage. If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$	$y = \frac{k}{x}$
	An equation of the form $y = \frac{\kappa}{x}$ represents inverse proportion.	+
3. Using	Direct : $\mathbf{y} = \mathbf{k}\mathbf{x}$ or $\mathbf{y} \propto \mathbf{x}$	p is directly proportional to q.
proportionality formulae	Inverse : $\mathbf{y} = \frac{k}{x}$ or $\mathbf{y} \propto \frac{1}{x}$	When $p = 12$, $q = 4$. Find p when $q = 20$.
	 Solve to find k using the pair of values in the question. Rewrite the equation using the k you 	1. $p = kq$ 12 = k x 4 so k = 3
	have just found.3. Substitute the other given value from the question in to the equation to find the	2. $p = 3q$ 3. $p = 3 \times 20 = 60$, so $p = 60$
4	missing value.	
4. Direct Proportion with powers	Graphs showing direct proportion can be written in the form $y = kx^n$ Direct proportion graphs will always start at the origin.	Direct Proportion Graphs
5. Inverse Proportion with powers	Graphs showing inverse proportion can be written in the form $y = \frac{k}{x^n}$ Inverse proportion graphs will never start at the origin.	Inverse Proportion Graphs $y = \frac{3}{x}$ $y = \frac{3}{x^2}$ $y = \frac{3}{x^2}$

Tibshelf Community School

Topic: Circumference and Area

1 - N
χγ I
ş, \

Topic/Skill	Definition/Tips	Example
1. Circle	A circle is the locus of all points equidistant from a central point.	
2. Parts of a Circle	 Radius – the distance from the centre of a circle to the edge Diameter – the total distance across the width of a circle through the centre. Circumference – the total distance around the outside of a circle Chord – a straight line whose end points lie on a circle Tangent – a straight line which touches a circle at exactly one point Arc – a part of the circumference of a circle Sector – the region of a circle enclosed by two radii and their intercepted arc Segment – the region bounded by a chord and the arc created by the chord 	Parts of a Circle Parts of a Circle Radius Diameter Circumference Chord Arc Tangent Chord Segment Sector
3. Area of a Circle	$A = \pi r^2$ which means 'pi x radius squared'.	If the radius was 5cm, then: $A = \pi \times 5^2 = 78.5 cm^2$
4. Circumference of a Circle	$C = \pi d$ which means 'pi x diameter'	If the radius was 5cm, then: $C = \pi \times 10 = 31.4cm$
5. π ('pi')	Pi is the circumference of a circle divided by the diameter. $\pi \approx 3.14$	$\begin{array}{c c} F \\ \hline \\$
6. Arc Length of a Sector	The arc length is part of the circumference. Take the angle given as a fraction over 360 ° and multiply by the circumference .	Arc Length = $\frac{115}{360} \times \pi \times 8 = 8.03cm$
7. Area of a Sector	The area of a sector is part of the total area. Take the angle given as a fraction over 360 ° and multiply by the area .	Area = $\frac{115}{360} \times \pi \times 4^2 = 16.1 cm^2$